Published by Todd Bush on December 4, 2024
More work is needed if we are to break the 5% efficiency barrier, but the team is confident this will be possible in the future.
Japanese scientists have developed a new means of cracking water into hydrogen fuel using sunlight. Using a special photocatalyst, this new technology could help usher in cheaper, more abundant, and sustainable hydrogen fuel for various applications.
Currently, most free hydrogen is derived from natural gas feedstocks, meaning moving away from fossil fuels for this greener option is not an option. However, this easily manufactured sunlight-powered method could prove pivotal if hydrogen is to become an alternative in the future.
“Sunlight-driven water splitting using photocatalysts is an ideal technology for solar-to-chemical energy conversion and storage, and recent developments in photocatalytic materials and systems raise hopes for its realization,” said Prof. Kazunari Domen, senior author of the article in Frontiers in Science.
“However, many challenges remain,” he added.
>> In Other News: Sublime Systems Awarded Contract with U.S. Department of Energy for Next-Generation, Clean Cement Manufacturing Plant in Holyoke, Mass.
When exposed to light, these catalysts facilitate chemical reactions that break down water into constituent parts. The concept is not new, but most existing, so-called ‘one-step’ ones are inefficient and have a meager solar-to-hydrogen energy conversion rate.
Another more sophisticated [two-step excitation system](https://pubs.acs.org/doi/10.1021/bk-2024-1468.ch001#:~:text=The photocatalysis hydrogen (H2,, material, or operational parameter). also exists, and it is more efficient. In these systems, one photocatalyst generates hydrogen from water, while another produces oxygen.
The Japanese team chose this second “two-step” water-cracking process. “Solar energy conversion technology cannot operate at night or in bad weather,” said Dr. Takashi Hisatomi of Shinshu University, another study author.
“But by storing the energy of sunlight as the chemical energy of fuel materials, it is possible to use ititit anytime and anywhere,” he added.
Domen and Hisatomi’s team produced a successful proof of concept by operating a 1,076 ft² (100 m²) reactor for three years. This reactor even performed better in real-world sunlight than in laboratory conditions.
“In our system, using an ultraviolet-responsive photocatalyst, the solar energy conversion efficiency was about one and a half times higher under natural sunlight,” said Hisatomi.
“Simulated standard sunlight uses a spectrum from a slightly high latitude region. Solar energy conversion efficiency could be higher in areas where natural sunlight has more short-wavelength components than simulated reference sunlight. However, currently, the efficiency under simulated standard sunlight is 1% at best, and it will not reach 5% efficiency under natural sunlight,” he added.
To move the technology forward and break that 5% barrier, the team says more researchers need to develop efficient photocatalysts and build larger experimental reactors.
“The most important aspect to develop is the efficiency of solar-to-chemical energy conversion by photocatalysts,” explained Domen.
“If it is improved to a practical level, many researchers will work seriously on developing mass production technology, gas separation processes, and large-scale plant construction. This will also change how many people, including policymakers, think about solar energy conversion and accelerate the development of infrastructure, laws, and regulations related to solar fuels,” he concluded.
Shinshu University is a prestigious research institution in Japan focused on innovative technologies and sustainable solutions. The university continues to lead the way in advanced studies, including renewable energy research, fostering a better future through science and education.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🛢️ 64 Carbon Projects Were Stuck. Texas Just Unlocked Them ⚙️ In Ohio, Hydrogen Industry Presses on Despite Federal Uncertainty 🧲 Agami Zero Breaks Through With Magnetic Hydrogen...
In This Issue 🛫 A Georgia Plant Just Cracked Aviation's Fuel Puzzle 📉 CO2RE And ERM Release 2025 Update On Greenhouse Gas Removal Costs 🔗 Abatable Partners With BlueLayer To Streamline Corporate C...
Inside This Issue 💼 Canada Unlocks EOR for Federal Tax Credits in Landmark Policy Shift 🚀 Carbontech Funding Opens as CDR Sector Pushes for Net-Zero Standard Revisions 💧 CHARBONE Confirms its Firs...
Step strengthens Louisiana’s role in U.S. energy leadership and advances project finance process for biomass‑to‑fuel facility SACRAMENTO, Calif. & NEW ORLEANS -- DevvStream Corp. (Nasdaq: DEVS...
Climeworks Opens the World’s Largest Direct Air Capture Innovation Hub
Key takeaways: Climeworks launches the largest innovation center for Direct Air Capture, employing over 50 engineers in Zurich, Switzerland. The center is designed to reduce the cost and increase...
XCF Global Moves to Double SAF Production with New Rise Reno Expansion
Initial development completed at New Rise Reno 2, advancing XCF's second SAF production facility and positioning construction to begin in 2026. $300 million planned investment will double XCF'...
Carbon Capture Technology Relies on High-Performance CO2 Sensors
As the Global South's first Direct Air Capture (DAC) company, Octavia Carbon has commissioned the world's second DAC + geological storage plant. Harnessing Kenya's abundant renewable geothermal ene...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.