Published by Todd Bush on December 4, 2024
More work is needed if we are to break the 5% efficiency barrier, but the team is confident this will be possible in the future.
Japanese scientists have developed a new means of cracking water into hydrogen fuel using sunlight. Using a special photocatalyst, this new technology could help usher in cheaper, more abundant, and sustainable hydrogen fuel for various applications.
Currently, most free hydrogen is derived from natural gas feedstocks, meaning moving away from fossil fuels for this greener option is not an option. However, this easily manufactured sunlight-powered method could prove pivotal if hydrogen is to become an alternative in the future.
“Sunlight-driven water splitting using photocatalysts is an ideal technology for solar-to-chemical energy conversion and storage, and recent developments in photocatalytic materials and systems raise hopes for its realization,” said Prof. Kazunari Domen, senior author of the article in Frontiers in Science.
“However, many challenges remain,” he added.
>> In Other News: Sublime Systems Awarded Contract with U.S. Department of Energy for Next-Generation, Clean Cement Manufacturing Plant in Holyoke, Mass.
When exposed to light, these catalysts facilitate chemical reactions that break down water into constituent parts. The concept is not new, but most existing, so-called ‘one-step’ ones are inefficient and have a meager solar-to-hydrogen energy conversion rate.
Another more sophisticated [two-step excitation system](https://pubs.acs.org/doi/10.1021/bk-2024-1468.ch001#:~:text=The photocatalysis hydrogen (H2,, material, or operational parameter). also exists, and it is more efficient. In these systems, one photocatalyst generates hydrogen from water, while another produces oxygen.
The Japanese team chose this second “two-step” water-cracking process. “Solar energy conversion technology cannot operate at night or in bad weather,” said Dr. Takashi Hisatomi of Shinshu University, another study author.
“But by storing the energy of sunlight as the chemical energy of fuel materials, it is possible to use ititit anytime and anywhere,” he added.
Domen and Hisatomi’s team produced a successful proof of concept by operating a 1,076 ft² (100 m²) reactor for three years. This reactor even performed better in real-world sunlight than in laboratory conditions.
“In our system, using an ultraviolet-responsive photocatalyst, the solar energy conversion efficiency was about one and a half times higher under natural sunlight,” said Hisatomi.
“Simulated standard sunlight uses a spectrum from a slightly high latitude region. Solar energy conversion efficiency could be higher in areas where natural sunlight has more short-wavelength components than simulated reference sunlight. However, currently, the efficiency under simulated standard sunlight is 1% at best, and it will not reach 5% efficiency under natural sunlight,” he added.
To move the technology forward and break that 5% barrier, the team says more researchers need to develop efficient photocatalysts and build larger experimental reactors.
“The most important aspect to develop is the efficiency of solar-to-chemical energy conversion by photocatalysts,” explained Domen.
“If it is improved to a practical level, many researchers will work seriously on developing mass production technology, gas separation processes, and large-scale plant construction. This will also change how many people, including policymakers, think about solar energy conversion and accelerate the development of infrastructure, laws, and regulations related to solar fuels,” he concluded.
Shinshu University is a prestigious research institution in Japan focused on innovative technologies and sustainable solutions. The university continues to lead the way in advanced studies, including renewable energy research, fostering a better future through science and education.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🔧 Utilities Seek to Bypass Low-Level Hydrogen Blending Demo, Citing Proven Safety 🌍 EU Sets World’s First Voluntary Standard for Permanent Carbon Removals ✈️ Cathay Achieves Anot...
Inside This Issue 🛫 New US Powerhouse: XCF Global, DevvStream & Southern Merge for SAF Scale ⛏️ Carbon Capture, ‘Rare Earth’ From Coal Among Projects Poised to Get $11.7M in State Grants 🗺️ Ca...
Inside This Issue 🧪 Why Bill Gates Bet $40M on This Carbon Capture Lab ⛏️ Max Power Prepares to Drill Second Natural Hydrogen Well as Program Expands 325 km SW of Lawson Discovery 💰 Trafigura-Back...
Terradot Acquires Eion to Form Leading Global Enhanced Rock Weathering Carbon Removal Platform
Terradot, an enhanced rock weathering (ERW) carbon removal company, today announced it has agreed to acquire assets of Eion, a U.S.-based ERW company known for pioneering olivine-based deployments ...
Clean Fuels Welcomes Proposed 45Z Rules
WASHINGTON, DC – Today, Clean Fuels Alliance America welcomed Treasury’s proposed rules for the 45Z Clean Fuel Production Credit, issued through the IRS. While the credit has been available since J...
pHathom Technologies Surpasses $12M Committed Capital with Closure of Seed Financing Round
HALIFAX, Nova Scotia -- pHathom Technologies, a climate technology company developing carbon capture solutions for existing coastal bioenergy and industrial facilities, today announced the closing ...
Growing Demand for Hydrogen Creates Opportunities for Appalachian Manufacturers
With abundant natural gas and a ready manufacturing base, Appalachia is positioned to be a leader in blue hydrogen production The hydrogen economy has transitioned to an emerging market. Appalachi...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.