Published by Todd Bush on January 20, 2025
When burned or used in fuel cells, hydrogen produces nothing but water, making it an ideal candidate for reducing global carbon emissions. Yet, most of the hydrogen produced today comes from fossil fuels, releasing significant amounts of carbon dioxide into the atmosphere. But now, researchers may have found a way to create carbon-free hydrogen.
A group of researchers, led by Professors Takashi Hisatomi and Kazunari Domen, built a 100-square-meter reactor that uses sunlight and photocatalysts to split water into hydrogen and oxygen. This process bypasses traditional photovoltaic-based methods, which convert sunlight into electricity before splitting water.
>> In Other News: World’s First Ship With Full Carbon Capture & Storage System Ready For Pilot Testing
The new process relies on sheets of a photocatalyst called SrTiO3:Al, which are submerged in water. Sunlight activates the photocatalyst, splitting water into its molecular components. The gases can then be collected for storage and use. Because it utilizes sunlight for power, this method creates clean, carbon-free hydrogen.
Unlike traditional methods, which lose efficiency in each energy conversion stage, this direct approach minimizes energy losses. The concept itself is groundbreaking. However, efficiency remains a significant hurdle. Current systems achieve just 1% efficiency under simulated sunlight and less than 5% in natural sunlight.
For comparison, state-of-the-art solar cells convert over 20% of sunlight into electricity. Improving efficiency is crucial not only to reduce costs but also to make reactors compact enough to practically rely on for carbon-free hydrogen production.
The researchers believe that advancing photocatalyst materials holds the key to scaling up this technology. We’ve also seen other attempts by researchers to bring clean hydrogen to a scalable level using similar techniques. However, they all suffer from the same scaling issue.
Despite its challenges, carbon-free hydrogen production offers a pathway to cleaner energy and industries. With better photocatalysts and increased investment, this technology could revolutionize how we produce hydrogen and accelerate the transition to a carbon-free economy—something we badly need in our failing fight against climate change.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 💧 Vema Hydrogen Secures $13 Million to Produce Clean Hydrogen Below $1 per Kilogram 🏭 Air Liquide Could Pursue Just Two Out of Six Us Hydrogen Hubs After Trump Halts Funding 🪨 Sc...
Inside This Issue 🏭 Wood Operating Innovative Pilot Carbon Capture Plant in Wyoming 🌍 Tiktok and Two Drifters Secure Carbon Removal for Long-term Economic Gains 🌬️ Hydron Energy Receives Funding S...
Inside This Issue 🤝 Tech Titans and Energy Giants Join Forces to Transform Voluntary Carbon Markets 🌲 How Amazon Approaches Carbon Credits, a Key Tool in the Fight Against Climate Change 💰 Canada ...
Air Liquide Could Pursue Just Two Out of Six Us Hydrogen Hubs After Trump Halts Funding
Feb 21 (Reuters) – France's Air Liquide said on Friday that only two out of their six previously awarded hydrogen projects for the U.S. Department of Energy (DoE) might move forward after President...
Pall Corporation and MTR Carbon Capture Partner to Advance Carbon Capture Solutions
This collaboration is designed to help customers accelerate their decarbonization goals Integrates Pall’s advanced flue gas filtration and coalescer technology with MTR’s Polaris™ membrane system ...
Vast Reserves of Game-changing Clean Fuel May Be Hidden Under Mountain Ranges, Scientists Find
Large reserves of white hydrogen may exist within mountain ranges, according to a new study, raising hopes this clean-burning gas can be extracted and supercharge efforts to tackle the climate cris...
Scientists Discover Low-cost Way to Trap Carbon Using Common Rocks
The new process uses heat to transform common minerals into materials that permanently sequester atmospheric carbon dioxide. Stanford Chemists Develop Low-Cost Process for Permanent CO2 Removal S...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.