decarbonfuse Icons/logo

Press Release

NewHydrogen CEO Steve Hill Discussed Hydrogen and Gas Turbine Combustion Systems with Georgia Tech Clean Energy Expert

Published by Todd Bush on March 26, 2024

Dr. Tim Lieuwen highlighted the need for efficient energy storage solutions and the use of existing natural gas infrastructure to produce and store hydrogen

SANTA CLARITA, Calif., March 26, 2024 (GLOBE NEWSWIRE) -- NewHydrogen, Inc. (OTCMKTS:NEWH), the developer of a breakthrough technology that uses clean energy and water to produce the world’s cheapest green hydrogen, today announced that in a recent podcast the Company’s CEO Steve Hill spoke with Dr. Tim Lieuwen, Executive Director of the Strategic Energy Institute at the Georgia Institute of Technology.

>> In Other News: NewHydrogen CEO Steve Hill Discussed Hydrogen and Gas Turbine Combustion Systems with Georgia Tech Clean Energy Expert

During the conversation, Dr. Lieuwen shared his extensive insight on gas turbine combustion systems, explaining their versatility and ability to use different types of fuel, including renewable ones such as hydrogen. The discussion also covered the process of generating electricity through gas turbines, with Dr. Lieuwen providing a detailed explanation.

Dr. Lieuwen and Mr. Hill also discussed challenges and opportunities of a hydrogen economy, with a focus on the use of green hydrogen produced from renewable sources. Dr. Lieuwen said, “There is a need for efficient energy storage solutions, such as converting the energy into hydrogen and storing it underground. In addition to the development of gas turbines, which are becoming more efficient over time, there is the challenge of transporting and storing hydrogen, which is being addressed through innovations in technologies like cryogenic storage and high-pressure compression.”

They also discussed the potential of using existing natural gas infrastructure to produce and store hydrogen. They recognized the need to balance supply and demand in the hydrogen economy, and the importance of data analytics in optimizing these systems. Lastly, Dr. Lieuwen expressed optimism about the future of the hydrogen economy, despite the challenges.

Dr. Lieuwen received a Ph.D. in mechanical engineering from Georgia Tech. He is a Regents’ Professor, the David S. Lewis, Jr. Professor and the Executive Director of the Strategic Energy Institute at Georgia Tech. Dr. Lieuwen is also founder and CTO of TurbineLogic, an analytics firm working in the energy industry. Current and past board positions include governing/advisory boards for Oak Ridge National Lab, Pacific Northwest National Lab, National Renewable Energy Lab, Electric Power Research Institute, appointment by the DOE Secretary to the National Petroleum Counsel, and board member of the ASME International Gas Turbine Institute. Dr. Lieuwen is listed as Google Scholar athttps://scholar.google.com/citations?user=6ipMUqMAAAAJ.

Watch the full discussion on the NewHydrogen Podcast featuring Dr. Lieuwen at https://newhydrogen.com/videos/ceo-podcast/dr-tim-lieuwen-georgia-tech-university.

For more information about NewHydrogen, please visit https://newhydrogen.com/.

About NewHydrogen, Inc.

NewHydrogen is developing ThermoLoop™ – a breakthrough technology that uses water and heat rather than electricity to produce the world’s lowest cost green hydrogen. Hydrogen is the cleanest and most abundant element in the universe, and we can’t live without it. Hydrogen is the key ingredient in making fertilizers needed to grow food for the world. It is also used for transportation, refining oil and making steel, glass, pharmaceuticals and more. Nearly all the hydrogen today is made from hydrocarbons like coal, oil, and natural gas, which are dirty and limited resources. Water, on the other hand, is an infinite and renewable worldwide resource.

Currently, the most common method of making green hydrogen is to split water into oxygen and hydrogen with an electrolyzer using green electricity produced from solar or wind. However, green electricity is and always will be very expensive. It currently accounts for 73% of the cost of green hydrogen. By using heat directly, we can skip the expensive process of making electricity, and fundamentally lower the cost of green hydrogen. Inexpensive heat can be obtained from concentrated solar, geothermal, nuclear reactors and industrial waste heat for use in our novel low-cost thermochemical water splitting process. Working with a world class research team at UC Santa Barbara, our goal is to help usher in the green hydrogen economy that Goldman Sachs estimated to have a future market value of $12 trillion.

Icons/external Source

Subscribe to the newsletter

Icons/inbox check

Daily decarbonization data and news delivered to your inbox

Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.


Latest issues

View all issues

Company Announcements

Daily decarbonization data and news delivered to your inbox

Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.

Subscribe illustration