Published by Todd Bush on December 9, 2024
OSU scientists have more than doubled a MOF’s carbon capture capacity using ammonia gas, creating a stable, energy-efficient alternative to traditional sorbents. This breakthrough highlights the potential of metal-organic frameworks (MOFs) in reducing industrial CO2 emissions.
>> In Other News: Enviro Group: CO2 Capture Legislation Has Problems
Scientists at Oregon State University (OSU) have developed a method to enhance the uptake ability of MOFs, a chemical structure that scrubs carbon dioxide from industrial emissions. In the United States, industrial activities account for 16% of total CO2 emissions, according to the Environmental Protection Agency.
The OSU team, led by Kyriakos Stylianou, associate professor of chemistry in the College of Science, focused on a copper-based MOF. They found its CO2 adsorption capacity more than doubled after exposure to ammonia gas. “The capture of CO2 is critical for meeting net-zero emission targets,” said Kyriakos Stylianou. “MOFs have shown a lot of promise because of their porosity and structural versatility.”
MOFs are crystalline materials composed of positively charged metal ions and organic linker molecules. Their nanosized pores adsorb gases, functioning like a sponge for CO2.
The flexibility in designing MOFs allows researchers to customize their properties, creating millions of potential structures. Over 100,000 MOFs have been synthesized so far, with applications ranging from gas capture to energy storage, drug delivery, and water purification.
The specific MOF used in this study, mCBMOF-1, achieved a carbon uptake capacity comparable to or better than traditional amine-based sorbents. Unlike traditional sorbents, MOFs are more stable and require less energy for regeneration, achieved in this case by simple water immersion.
“The MOF is activated by removing water molecules to expose four closely positioned open copper sites,” explained Kyriakos Stylianou. “We then introduce ammonia gas, which occupies one site, leaving the remaining sites to attract CO2 and promote interactions to form carbamate species.”
These carbamates, which have industrial, agricultural, and medical uses, are released during the water immersion process, regenerating the MOF for further use.
This study demonstrates that MOF structures can be tailored with functional groups to target specific molecules like carbon dioxide. Such innovations open doors for applying similar techniques to other gases and MOFs.
“Our study’s use of sequential pore functionalization to enhance CO2 uptake without significantly increasing regeneration energy is a terrific development,” said Kyriakos Stylianou. “The formation of a copper-carbamic acid complex within the pores suggests strong and selective interactions with CO2, which is crucial for ensuring that CO2 is preferentially adsorbed over other gases in flue emissions.”
The findings highlight the versatility and scalability of MOFs, providing new opportunities for industrial carbon capture and beyond.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🚀 Climeworks Raises USD 162M to Scale Up Technology 🛠️ DNV Advances Skylark to Enable Safe Scaling of CO2 Pipelines for Carbon Capture and Storage 🍁 Canada’s Rising Role in the G...
Inside This Issue 🏗️ Hyundai Unveils $6B Hydrogen-Powered Steel Mill in Louisiana, Aims to Position State as National Energy Leader 🤝 Deep Sky Inks Next DAC Deal in Germany with Greenlyte Carbon T...
Inside This Issue 🍁 Inside Canada’s Quiet Takeover of the Carbon Capture Industry ✈️ Phillips 66 to Supply SAF to British Airways in Calif 💧 HyVera Distributed Energy Launches Green Hydrogen-On-De...
Next-Gen Construction: 200 & 500kVA Hybrid Fuel-Cell Power USA - English
Elemental Energy launches its latest 200 & 500kVA hybrid hydrogen-BESS solution to optimise power supplies and eliminate combustion generators LONDON, July 3, 2025 /PRNewswire/ -- Elemental En...
Researchers in China have developed a groundbreaking technique that allows proton exchange membrane (PEM) electrolyzers to produce clean hydrogen from impure water, potentially reducing costs and e...
BILBAO, Spain--H2SITE has been awarded the EIC (European Innovation Council) Accelerator program for a project aimed at deploying a first-of-its-kind ammonia cracking unit capable of producing 1 to...
Trump's Budget Bill Boosts Fossil Fuels, Hits Renewable Energy
WASHINGTON - The budget bill the U.S. Senate passed on Tuesday and the House of Representatives is now debating for final approval would dampen development of wind and solar power, kill climate fun...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.