Published by Todd Bush on December 16, 2024
Baker Hughes, an energy technology company, and the University of California, Berkeley have announced a new long-term research partnership to establish the Baker Hughes Institute for Decarbonization Materials at UC Berkeley’s College of Chemistry. The institute will connect breakthrough academic research with commercial innovation to accelerate the deployment and scaling of cost-effective climate technology solutions that drive sustainable energy development.
>> In Other News: Carbfix and Carbonquest Announce a Memorandum of Understanding to Pursue Distributed Carbon Capture and Mineralization Projects in North America
As part of the agreement, Baker Hughes will fund collaborative research to develop next-generation materials for a range of energy and industrial applications, including carbon capture, utilization and storage (CCUS), hydrogen, and clean power generation, among others. Baker Hughes will be closely involved from the earliest stages of research to shape the programs based on evolving market and customer needs, as any discoveries may potentially be scaled across the company’s portfolio of climate technology solutions.
“Innovation, collaboration, and partnership are critical to building the diversified portfolio of technology solutions necessary to meet the energy demands of today and tomorrow. Partnering with UC Berkeley’s College of Chemistry is an important step forward in our commitment to sustainable energy development,” said Chris Pin Harry, vice president of Technology, Industrial & Energy Technology (IET) at Baker Hughes.
The institute will be led by C. Judson King Distinguished Professor and UC Berkeley Professor of Chemistry Jeffrey Long, a globally recognized materials expert who pioneered the use of metal-organic frameworks (MOFs) for adsorbing carbon dioxide and other molecules from industrial emissions streams. Baker Hughes’ funding will support Berkeley researchers, with expertise in materials development and discovery, computational chemistry, advanced characterization, process engineering, and techno-economics. Chris Pin Harry and Daniela Abate, VP CCUS, Climate Technology Solutions at Baker Hughes, will serve on the institute’s joint steering committee.
Initial research projects will focus on advanced material design, including creating and testing new chemical structures like MOFs, as well as developing gas separation and chemical conversion systems. Additionally, the projects will leverage AI and machine learning to accelerate the discovery and development of improved materials and new technology solutions.
“Our aim is to make materials that not only adsorb gases more efficiently, but also without high energy requirements,” said Professor Long, the institute’s executive director. “As chemists, we know how to adjust materials at the atomic level, but we need partners like Baker Hughes who can scale and industrialize the technology. Lowering emissions is an urgent task, and I am confident that together, we can make scalable, commercially relevant materials that can quickly hit the market and make a difference.”
The partnership builds on Baker Hughes’ wider development of innovative climate technologies, including its work in CCUS with Mosaic Materials direct air capture (DAC) technology. Acquired by Baker Hughes in 2022, Mosaic Materials was born out of Professor Long’s lab at UC Berkeley, and pilot units are currently being tested to accelerate deployment at commercial scale.
The institute underscores Baker Hughes’ commitment to investing in emerging technologies that will efficiently reduce or eliminate emissions across multiple industries.
Baker Hughes is an energy technology company that provides solutions to energy and industrial customers worldwide. Built on a century of experience and conducting business in over 120 countries, our innovative technologies and services are taking energy forward – making it safer, cleaner and more efficient for people and the planet. Visit us at bakerhughes.com.
The University of California, Berkeley, is consistently rated the world’s top public university. The flagship of the 10-campus University of California system, it was chartered in 1868 with a mission to excel in teaching, research and public service. Enrolling more than 42,000 undergraduate and graduate students, the campus has more than 1,500 full-time and 500 part-time faculty members in more than 130 academic departments that offer more than 350 degree programs.
The faculty's outstanding research achievements and scholarship so far have led to 26 Nobel Prizes, and an additional 35 Nobel Prizes have been won by alumni. The College of Chemistry at UC Berkeley consistently earns top rankings nationally and globally, standing out among a select few chemistry colleges by various metrics. It is currently ranked the #1 U.S. graduate chemistry program by the U.S. News & World Report.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🛢️ 64 Carbon Projects Were Stuck. Texas Just Unlocked Them ⚙️ In Ohio, Hydrogen Industry Presses on Despite Federal Uncertainty 🧲 Agami Zero Breaks Through With Magnetic Hydrogen...
In This Issue 🛫 A Georgia Plant Just Cracked Aviation's Fuel Puzzle 📉 CO2RE And ERM Release 2025 Update On Greenhouse Gas Removal Costs 🔗 Abatable Partners With BlueLayer To Streamline Corporate C...
Inside This Issue 💼 Canada Unlocks EOR for Federal Tax Credits in Landmark Policy Shift 🚀 Carbontech Funding Opens as CDR Sector Pushes for Net-Zero Standard Revisions 💧 CHARBONE Confirms its Firs...
Step strengthens Louisiana’s role in U.S. energy leadership and advances project finance process for biomass‑to‑fuel facility SACRAMENTO, Calif. & NEW ORLEANS -- DevvStream Corp. (Nasdaq: DEVS...
Climeworks Opens the World’s Largest Direct Air Capture Innovation Hub
Key takeaways: Climeworks launches the largest innovation center for Direct Air Capture, employing over 50 engineers in Zurich, Switzerland. The center is designed to reduce the cost and increase...
XCF Global Moves to Double SAF Production with New Rise Reno Expansion
Initial development completed at New Rise Reno 2, advancing XCF's second SAF production facility and positioning construction to begin in 2026. $300 million planned investment will double XCF'...
Carbon Capture Technology Relies on High-Performance CO2 Sensors
As the Global South's first Direct Air Capture (DAC) company, Octavia Carbon has commissioned the world's second DAC + geological storage plant. Harnessing Kenya's abundant renewable geothermal ene...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.