Carbon capture, utilisation, and storage (CCUS) technologies are often criticized for being expensive and challenging to implement at scale.
However, achieving net-zero emissions is considered "virtually impossible" without them, as noted by the International Energy Agency (IEA).
Among these technologies, biomineralisation has emerged as a promising, eco-friendly approach.
>> RELATED: DOE Invests $100 Million for Pilot-Scale Carbon Conversion
Biomineralisation is a natural process where dissolved inorganic carbon reacts with mineral cations like calcium (Ca²⁺) and magnesium (Mg²⁺) to form stable carbonate minerals.
This process mimics the way marine organisms such as corals and mollusks build their exoskeletons by absorbing CO2 from ocean water.
The study, titled "Biomimetic mineralisation for carbon capture and sequestration," highlights how this method could contribute significantly to sustainable carbon sequestration.
Marine organisms produce an estimated 5 billion tons of calcium carbonate annually, with 60% accumulating in sediments.
This equates to around 1.4 billion tons of CO2 stored in the ocean each year, roughly 5% of global annual emissions from fossil fuels and industrial activities.
Traditional carbon sequestration methods like deep-ground injection, ocean storage, and enhanced oil recovery (EOR) have significant drawbacks.
Deep-ground injection depends on specific geological conditions and risks leakage due to seismic activity. Ocean storage can lead to acidification, harming marine ecosystems.
EOR poses challenges in preventing CO2 leakage and ensuring long-term stability.
In contrast, biomineralisation offers a safer and more sustainable alternative. This method turns CO2 into solid rocks, minimizing the risk of it escaping back into the atmosphere.
Additionally, biomineralisation relies on biomolecules processed through natural chemical reactions, reducing environmental impacts compared to physicochemical methods that consume significant chemicals and energy.
>> In Other News: Hydrogen Equipment Pioneer H2SITE Successfully Raises EUR36 Million From a Consortium of Investors Co-led by Hy24 and SC Net Zero Ventures
Eco-Friendly and Sustainable Biomineralisation requires minimal energy input and operates under ambient conditions. It’s effective across various environments and avoids the adverse environmental effects of traditional methods.
Low-Cost Approach The process has lower chemical and operational costs and better control over reaction conditions, making it a potentially affordable solution for carbon sequestration.
Abundant Resources Mineral cations necessary for the process are readily available in ocean water and industrial waste, further enhancing its sustainability.
DR. ELLEN KAY, one of the researchers behind the study, emphasized, “Biomineralisation is not just a method; it’s nature’s own blueprint for sustainable carbon storage.”
While biomineralisation holds promise, several hurdles remain:
Scaling UpThe technology is currently limited to laboratory-scale experiments. Scaling it for widespread use requires further testing to establish economic viability.
Recycling Limitations Once carbonate minerals form, the CO2 is permanently locked within. This prevents recycling and necessitates continuous production of new biocatalysts, which could raise costs.
Operational Feasibility Deploying this method on a mass scale requires innovative solutions to reduce costs and streamline the use of biocatalysts.
DR. RICHARD EVANS, another key researcher, noted, “Biomineralisation is a low-cost, eco-friendly CCUS technology, but we need to address its scalability to make it a viable global solution.”
Despite the challenges, biomineralisation could revolutionize carbon storage. By leveraging abundant resources like industrial waste and ocean water, this method could become a cornerstone of eco-friendly carbon sequestration.
Researchers believe that continued investment in this technology could help overcome its limitations, paving the way for a scalable solution.
The study’s findings suggest that biomineralisation offers better control over reaction conditions and robustness across different environments. These qualities make it an attractive alternative to existing carbon capture methods.
Biomineralisation represents a significant step forward in the quest for sustainable carbon storage. By mimicking natural processes, this method minimizes environmental harm while offering a safer alternative to traditional carbon sequestration techniques.
While challenges remain, ongoing research and innovation could unlock its full potential, making it a game-changer in the fight against climate change.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🌊 NYK Partners With Climeworks to Remove CO₂ Through Diverse Carbon Removal Solutions 🛠️ First Public Hydrogen (FPH2) Appoints Ernesto Medrano to Board of Directors 💡 Kinetics Ac...
Inside This Issue 📊 Trading Carbon Right: Why Credit Quality Matters More Than Ever ☀️ SunHydrogen Contracts The Process Group for Front-End Engineering Design of 25m2 Renewable Hydrogen Pilot Pla...
Inside This Issue 🏆 Tri-gen Receives U.S. Department of Energy 2025 Better Project Award ⚡ HyOrc Corporation Unveils Modular Hydrogen Power for a Failing Grid 🌳 Everland in Partnership with BNP Pa...
Statkraft Stops New Development of Green Hydrogen Projects
Statkraft has decided to stop new development of green hydrogen due to increased uncertainty in the market. Parts of the portfolio will be matured before seeking investors to realise the projects. ...
Exxon Agrees to Supply Japan's Marubeni With Low-Carbon Ammonia
Exxon Mobil has signed a long-term agreement to supply 250,000 metric tons of low-carbon ammonia annually to Japanese trading house Marubeni, the U.S. oil producer said on Wednesday, representing E...
Elcogen and Casale SA Collaborate to Drive Innovation in Green Ammonia and Sustainable Energy
Tallinn, ESTONIA, May 07, 2025 (GLOBE NEWSWIRE) -- Elcogen, a leading European manufacturer of technology that enables the efficient production of affordable green hydrogen and emission-free electr...
Synagro and Partners to Test Commercial-Scale High Temperature Pyrolysis Pilot for PFAS Destruction, Syngas Recovery and Biochar Production CHAR Technologies Ltd. ("CHAR Tech" or the "Company") (T...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.