Published by Todd Bush on November 29, 2024
The project will investigate three separate sites in Osage and Kay Counties as potential locations for the injection of approximately 54 million metric tons of CO2 over 20 years.
A team of researchers from across the University of Oklahoma Mewbourne College of Earth and Energy and Los Alamos National Laboratory have secured an $18.7 million grant from the U.S. Department of Energy to investigate commercial subsurface storage of CO2. This project aims to advance carbon storage solutions as part of a broader effort to combat climate change.
The university and national lab will work with industry partners, including oil and gas firms, on the Oklahoma Carbon Hub project. The sites under development could involve partner companies operating just outside the Sooner state.
University of Oklahoma Mewbourne College of Earth and Energy researcher working in a lab. OU is leading the Oklahoma Carbon Hub, an initiative to research potential carbon storage sites.
>> In Other News: New Discovery Reveals How Diatoms Capture Carbon Dioxide So Effectively
The Oklahoma Carbon Hub is part of the U.S. Department of Energy's Carbon Storage Assurance Facility Enterprise (CarbonSAFE) initiative and a $518 million effort by the DOE's Office of Fossil Energy and Carbon Management to fund a third round of projects focused on carbon storage site characterization and permitting.
"We're emitting more and more carbon dioxide into the atmosphere over time. If we could capture that carbon dioxide at certain point sources, we could use these types of facilities to store it long-term," said Matthew Pranter, director of the OU School of Geosciences and the lead principal investigator on the grant. "With this grant and the Mewbourne College of Earth and Energy's history of expertise in the subsurface, OU will be able to directly impact and participate in reducing CO2 emissions into our atmosphere. We're trying to help with the global issue of climate change and mitigate or reduce the amount of CO2 that's going into the atmosphere."
The project will investigate three separate sites in Osage and Kay Counties as potential locations for the injection of approximately 54 million metric tons of CO2 over 20 years. For reference, the average car in the U.S. will produce one metric ton of CO2 over a three-month period.
The CVR fertilizer plant near Coffeyville, KS, the Azure sustainable aviation fuel production facility near Cherryvale, KS, and the Heimdal direct air capture units on the Osage Reservation in Oklahoma will store CO2 emissions through the Hub.
According to Matthew Pranter, Ph.D., director of the OU School of Geosciences and Eberly Family Chair, the lead principal investigator on the grant, subsurface geological storage is a potentially favorable option as oil and natural gas under the surface have been trapped for years and have not migrated to the surface.
For these potential sites, researchers contend it is important to characterize and quantify the spatial distribution of pore space and minerals in the subsurface and determine the optimal locations to drill injection wells. Drilling wells to acquire thick cores provides researchers direct observation of the rock, a crucial aspect of the project.
The target rock layer is the Arbuckle Group, a primarily limestone and dolomite formation. Pranter added that the Arbuckle Group in the study area has high porosity, while the rock formations above have low porosity and permeability, predicted to act as a seal to keep the stored CO2 in the Arbuckle Group. Porosity is the percentage of void space within a rock, allowing for potential storage within the rock formation. Permeability defines how easily material can flow through the pores of the rock.
EnergyTech is focused on mission-critical and large-scale energy users and their sustainability and resiliency goals. These include the commercial and industrial sectors, as well as the military, universities, data centers, and microgrids.
Many large-scale energy users, such as Fortune 500 companies, and mission-critical users, including military bases, universities, healthcare facilities, public safety, and data centers, are shifting their energy priorities to reach net-zero carbon goals within the coming decades. These efforts include plans for renewable energy power purchase agreements, on-site resiliency projects such as microgrids, combined heat and power, rooftop solar, energy storage, digitalization, and building efficiency upgrades.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🌲 Living Carbon Announces Agreement with Microsoft for 1.4 Million Tonnes of Carbon Removal from Reforestation of Former Mine Lands in Appalachia 🏭 US Energy Expands Carbon Captu...
Inside This Issue 🧬 Occidental's Bold Bet on Carbon Removal: What the Holocene Acquisition Really Means 🌊 Project to Suck Carbon Out of Sea Begins in UK 🧱 NovoMOF Raises $5.4 Million to Scale Up L...
Inside This Issue 🧪 CF Industries Announces Joint Venture with JERA Co., Inc., and Mitsui & Co., Inc., for Production and Offtake of Low-Carbon Ammonia 🪨 Microsoft Signs Large Carbon Removal D...
Anaergia and Capwatt Sign Binding Letter of Intent for Nine New Biogas Plants in Europe
Follow-up agreement builds on past cooperation between the companies TREVIGLIO, Italy & BURLINGTON, Ontario--(BUSINESS WIRE)--Anaergia Inc. (“Anaergia”, the “Company”, “us”, or “our”) (TSX:ANR...
Cummins Launches Next-Gen Battery Energy Storage Systems (BESS) in the UAE Middle East - English USA
Cummins Arabia and Cummins Middle East jointly launched Cummins' new Battery Energy Storage Systems (BESS) at an exclusive event held in Dubai on Monday, April 14. The launch was attended by key cu...
Living Carbon, a public benefit company transforming degraded and underutilized land into high quality environmental assets, announced today that Microsoft has agreed to purchase 1.4 million tonnes...
NovoMOF Raises $5.4 Million to Scale Up Low-Cost Carbon Capture Materials
novoMOF said it has raised CHF 4.4 million (USD $5.4 million) to further advance its sustainable materials for low-cost carbon capture in high-emissions industrial sectors. Founded in 2017 as a sp...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.