Published by Todd Bush on May 18, 2022
May 17, 2022 07:30 AM Eastern Daylight Time
WILMINGTON, Del.--(BUSINESS WIRE) -- The Chemours Company ("Chemours") (NYSE: CC), a global chemistry company with leading market positions in Titanium Technologies, Thermal & Specialized Solutions, and Advanced Performance Materials, announced its participation leading a three-year recycling research project in collaboration with industry, academic, and government experts to develop an efficient, cost-effective, and more sustainable process for recovering titanium dioxide (TiO2) and polymers from plastic end-use products. The initiative, dubbed Remove2Reclaim, has the potential to drive significant environmental benefits, eliminating waste and reducing the amount of energy used in manufacturing, by enabling circularity across a much wider range of applications.
>> In Other News: EPA Authorizes Original Equipment Manufacturers to Install Halo on Medium- and Heavy-Duty Tractors to Meet Greenhouse Gas Requirements
Current commercial scale recycling technologies do not allow polymers and additives to be effectively removed and separated, limiting the potential applications and overall quality of products made with recycled plastic. Remove2Reclaim is designed to change that. The project goal is to develop commercial-scale detection and extraction technologies that enable the removal and recovery of TiO2 and polymers for reuse.
"Through the Remove2Reclaim initiative, we hope to help crack the code on effective plastic recycling, achieving a new level of circularity for the industry," said Steven De Backer, EMEA Technical Marketing Manager at Chemours. "This initiative has the potential to reclaim thousands of tons of TiO2 from different end-of-life streams, reducing raw material demands, and creating a new TiO2 supply stream for our customers. We're honored to lead this project in collaboration with a team of experts from across the value chain to pursue a common goal that benefits our shared planet."
In the project's first year, research partners have developed a sorting mechanism to effectively identify plastic wastes that contain TiO2 and determined innovative solvent-based extraction routes to remove TiO2 from different polymer matrices. Other project milestones include developing methods and equipment to detect TiO2 in specific polymer matrices, recovering TiO2 from the polymer by dissolution route, and eventually reusing the TiO2 and polymer in new products.
"At Chemours, we aspire to be the most sustainable TiO2 enterprise in the world, and that requires applying our expertise to some of the world's greatest challenges, including plastic circularity," said Ed Sparks, President of Titanium Technologies at Chemours. "We're committed to leveraging responsible chemistry and cross-industry collaboration to solve our customers' challenges with minimal impact on our shared planet. Remove2Reclaim is a great example of this model at work."
The Remove2Reclaim project kicked off in September 2020 with the support of Catalisti, the spearhead cluster for the chemical and plastics industry in Flanders, Belgium. It includes a collaboration of the public and private sectors, including Chemours as the project coordinator, INEOS Styrolution, Lybover, Deceuninck, Matco Plastics, Centexbel, VITO, Ghent University, and KU Leuven. The project also received funding from VLAIO, the Flanders Innovation and Entrepreneurship Agency.
"Remove2Reclaim is an exciting project with the potential to turn recycling ambitions into circular solutions that benefit our planet," reads a statement from Catalisti. "By bringing together leaders in the industry, academic, and government spheres, we're taking a holistic approach that engages the entire value chain. The project has gained momentum under Chemours' leadership, and we're looking forward to seeing this initiative continue making progress toward achieving its goal of producing an innovative new recycling process."
The Chemours Company (NYSE: CC) is a global leader in Titanium Technologies, Thermal & Specialized Solutions, and Advanced Performance Materials providing its customers with solutions in a wide range of industries with market-defining products, application expertise and chemistry-based innovations. We deliver customized solutions with a wide range of industrial and specialty chemicals products for markets, including coatings, plastics, refrigeration and air conditioning, transportation, semiconductor and consumer electronics, general industrial, and oil and gas. Our flagship products include prominent brands such as Ti-Pure™, Opteon™, Freon™, Teflon™, Viton™, Nafion™, and Krytox™. The company has approximately 6,400 employees and 29 manufacturing sites serving approximately 3,300 customers in approximately 120 countries. Chemours is headquartered in Wilmington, Delaware and is listed on the NYSE under the symbol CC.
For more information, we invite you to visit chemours.com or follow us on Twitter @Chemours or LinkedIn.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 💰 OCED Announces up to $1.8 Billion in New Funding for Transformational Direct Air Capture Technologies 🌱 BP Announces Investment Decision for “Lingen Green Hydrogen” Project 🧪 C...
Inside This Issue 🌊 ExxonMobil Partners with Worley for Groundbreaking Blue Hydrogen Facility in Texas 🏗️ Holcim Group to Test Capsol’s Carbon Capture Technology as a Step Towards Decarbonized Cem...
Inside This Issue 💧 Revolutionizing the Green Hydrogen Market: City of Lancaster and City of Industry Launch First Public Hydrogen (FPH2)--the First Public Hydrogen Utility 🌿 Drax and Pathway Ener...
BP Announces Investment Decision for “Lingen Green Hydrogen” Project
bp has announced its final investment decision for the “Lingen Green Hydrogen” project, a major step forward in the industrial-scale development of green hydrogen in Germany. Supported by funding f...
Federal Energy Regulators to Assess Environmental Risks of Funding Northwest Hydrogen Hub
The U.S. Department of Energy is beginning its environmental impact assessment of “clean” hydrogen projects that have been proposed as part of a planned $1 billion in federal funding A year after ...
Advancements in Electrolyzer Technology Could Make Green Hydrogen Viable Sooner Than You Think
Historically, the mass production of green hydrogen has not been viewed as a viable alternative energy solution for our climate crisis. But recent technological advancements in proton exchange memb...
The U.S. Department of Energy (DOE) Office of Clean Energy Demonstrations (OCED) today opened applications for up to $1.8 billion in funding for the design, construction, and operation of mid- and ...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.