Published by Todd Bush on November 20, 2024
A unique crystalline compound soaks up CO2 with great efficiency
This story was produced in partnership with the Pulitzer Center’s Ocean Reporting Network.
Scientists and engineers are developing big machines to suck carbon dioxide out of the atmosphere, but the technology requires significant energy and costs—up to $1,000 per metric ton of captured CO2. Chemists at the University of California, Berkeley, have created a yellow powder they claim could boost this field by absorbing CO2 much more efficiently.
>> In Other News: Council Greenlights EU Certification Framework for Permanent Carbon Removals, Carbon Farming and Carbon Storage in Products
Detailed climate projections indicate the world will need to remove far more CO2 than it is doing now to achieve climate targets. The U.S. is investing billions of dollars in start-ups developing direct air capture (DAC) technology, which uses fans to blow air through alkaline materials that bond with the slightly acidic CO2. Along with lye and crushed limestone, a popular alkaline material is an amine, a compound typically manufactured from ammonia.
Graduate student Zihui Zhou and professor Omar Yaghi, both at U.C. Berkeley, embedded amines in a crystalline compound known as a covalent organic framework, which has extensive surface area. The resulting powder, named COF-999, is a microscopic scaffolding of hydrocarbons held together by superstrong carbon-nitrogen and carbon-carbon bonds. The amines sit in the scaffolding’s open spaces, ready to snag CO2 molecules passing by. When Zhou and Yaghi pumped air through a tube packed with the powder, it captured CO2 at the greatest rate ever measured, they wrote in a recent Nature study. "We were scrubbing the CO2 out of the air entirely,” Yaghi says.
Besides equipment, the biggest cost for DAC is often energy to heat the absorbent material so it releases the captured CO2, which is collected in tanks and later injected underground or sold to industry. The powder released CO2 when heated to 60 degrees Celsius, much less than the over 100 degrees Celsius needed at current DAC plants. After more than 100 catch-and-release cycles, it showed no significant decline in capacity, according to the study.
The COF-999 compound might also compete with liquid amines used in carbon capture and storage scrubbers on refinery and power plant smokestacks, Yaghi says. It’s light enough—200 grams can draw down as much CO2 in a year as a large tree—that it could potentially strip carbon from the exhaust onboard ships, too.
Companies already manufacture a similar material, metal organic frameworks, to capture CO2 from smokestacks, as well as for gas masks to protect against hazardous chemicals. In these crystalline structures, the superstrong bonds are formed between metal compounds rather than hydrocarbons. But Yaghi, who owns a company that produces both types of materials, says COF-999 can be more durable, water-resistant, and efficient at removing CO2 than leading metal organic frameworks. A Nature Communications study published in September reported that another covalent organic framework based on phosphate bonds also had potential for carbon capture.
The COF-999 powder hasn’t yet been tested for real-life applications, notes Jennifer Wilcox, a University of Pennsylvania chemical engineer who formerly worked on carbon removal at the U.S. Department of Energy. For example, if it restricts airflow too much when coated on a filter or formed into pellets, that could increase energy consumption by the fans. These kinds of engineering properties, Wilcox says, “will ultimately dictate costs.”
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🚢 World’s First Ship With Full Carbon Capture & Storage System Ready For Pilot Testing 💰 DOE Invests Nearly $14 Million To Develop Carbon Conversion Pathways 🔬 DOE Invests $1...
Inside This Issue 🔋 Plug Closes Loan Guarantee from the U.S. Department of Energy 🗺️ USGS Releases First-ever Map of Potential for Geologic Hydrogen in U.S. 🌎 Constellation to Acquire Calpine; Cre...
Inside This Issue 🌍 Plug Seals Monumental Deal with Allied Green Ammonia for a Mega 3 GW Electrolyzer System 💰 DOE Invests $101 Million to Establish Carbon Capture, Removal, and Conversion Test Ce...
The Series B Funding round is co-led by Hy24 and SC Net Zero Ventures who are joined by Breakthrough Energy Ventures, Enagas Emprende, Equinor Ventures, Exergon, Ezten, and MassMutal Ventures. The...
Orennia Completes Series C Funding Led by Decarbonization Partners
CALGARY, Alberta, Jan. 21, 2025 (GLOBE NEWSWIRE) -- Orennia Inc. today announced the closing of its Series C growth financing, led by Decarbonization Partners, a partnership between BlackRock and T...
WASHINGTON, D.C. — The U.S. Department of Energy’s (DOE) Office of Fossil Energy and Carbon Management (FECM) today announced $45 million in federal funding for six projects to create regional cons...
The cost of building new renewable energy plants is now cheaper than operating existing fossil fuel plants globally and exciting opportunities exist for global decarbonization involving hydrogen S...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.