Published by Todd Bush on November 21, 2023
BILBAO,Spain--(BUSINESS WIRE)--H2SITE has successfully validated the first ammonia cracker to produce high-purity hydrogen for onboard power generation using a PEM fuel cell. An integrated membrane reactor has been installed and operated on board of the BERTHA B supply ship, sailing the shores of the Gulf of Biscay.
Maritime transport is responsible for 2% of global greenhouse gas emissions, presenting significant potential for emission reduction by transitioning from hydrocarbons to green fuel options, such as hydrogen.
Ammonia cracking is gaining traction as a potential hydrogen carrier for onboard applications. It can be used directly in engines, or it can be cracked into hydrogen and used in fuel cells. Before hydrogen is used, purification is necessary, especially if traces of ammonia are present.
H2SITE’s membrane reactors make sure all the ammonia is transformed, while delivering a high purity hydrogen to the fuel cell in a single process step. During navigation, as part of the H2OCEAN project, H2SITE’s cracker has successfully powered the ship's auxiliary services. This achievement was made possible thanks to the collaboration with players active in the maritime decarbonization segment such as Zumaia Offshore, Erhardt Offshore, Ajusa, and TECNALIA, along with the participation of Enagas and ABS.
“Our innovative membrane reactor technology not only brings an improvement in system efficiency but also reduces the footprint of the installation. This is especially important in applications where space is limited, such as onboard a vessel.". to Jose Medrano, Technical Director atH2SITE. “We have focused our design efforts on minimizing the ammonia consumption, which will be key for the scale up to suit higher power output units ”.
This project is a steppingstone for H2SITE in the decarbonization of maritime transport.
H2SITE was established in 2020 and possesses exclusive technology for reactors and separators, facilitating the conversion of various feedstocks into hydrogen. These include ammonia, methanol, or synthetic gas, as well as the separation of hydrogen from gaseous mixtures in low concentrations for applications in salt caverns or geological hydrogen.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 💰 Gevo Transforms Carbon Waste Into Market Gold 🛫 CADO and 4AIR Harmonize SAF Registries for Commercial and Business Aviation 🌊 Vortex Energy Receives Government Approval for Amb...
Inside This Issue 🌎 US Carbon Capture Race: $77B Industry Shifts Global Balance 🛠️ NETL Releases Tool To Calculate Costs of Geologic Carbon Storage Projects in the Gulf of America ✈️ Avia Solution...
Inside This Issue 💰 BlackRock’s €1 Billion Bet on Eni Fuels Carbon Capture Confidence 💧 Wastewater Contaminants Boost Green Hydrogen Production 🌾 Gevo Sells Carbon Credits from North Dakota Asset ...
CADO and 4AIR Harmonize SAF Registries for Commercial and Business Aviation
MONTREAL /PRNewswire/ -- The Civil Aviation Decarbonization Organization (CADO) and 4AIR announced a strategic collaboration between their respective Sustainable Aviation Fuel (SAF) registries. The...
Gold Standard Launches Framework for High-Integrity Engineered Carbon Removals
New Engineered Removals Requirements set rigorous standards for carbon removal certification Updated methodologies now cover mineral waste, BECCS, and fermentation-based CDR All projects must cont...
DENVER--BKV Corporation (“BKV” or the “Company”) (NYSE: BKV) today announced the execution of an agreement with a leading diversified midstream energy company to develop a new carbon capture and se...
For the widespread deployment of carbon capture, utilization and storage (CCUS) to succeed, emitters, financiers and project developers continue to be challenged to make viable investment decisions...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.