Researchers have used electrolysis to directly make low-cost hydrogen from urine. The process uses 25% less electricity than splitting water.
Human waste contains many valuable nutrients such as nitrogen, phosphorus and potassium. That makes it a promising potential fertilizer with a lower carbon footprint than today’s fertilizers.
>> In Other News: JPMorgan Backs Mati Carbon to Scale ERW Carbon Removal Technology
But human waste is also a promising source of untapped energy. And in the latest attempt to tap that energy, researchers have developed a low-cost, efficient way to produce clean hydrogen fuel from human urine. They present this work in the journal Nature Communications.
Hydrogen is a clean-burning fuel that has the potential to decarbonize shipping, aviation, and heavy industries. But it is mostly produced around the world by stripping it out of natural gas, releasing carbon dioxide in the process. The best way to make green hydrogen is to split water into hydrogen and oxygen, but this technology in turn requires large amounts of electricity.
As a cost-effective alternative, researchers have been looking at splitting urea to produce hydrogen, which requires much less energy than splitting water. However, pure urea is typically produced via the chemical Haber-Bosch process, which is also energy- and carbon-intensive.
So researchers from the Australian Research Council Centre of Excellence for Carbon Science and Innovation and the University of Adelaide came up with a way to use a free source of urea: human urine.The team has devised a method to produce hydrogen by directly splitting the urea in urine. Urine contains plenty of urea, but it also contains chloride ions, which cause unwanted chemical reactions during electrolysis. The reactions produce chlorine gas, which corrodes the electrodes and slows down the urea-splitting reaction, eventually damaging the setup.
As a solution, the researchers developed a system based on a different reaction mechanism. They use a platinum-based catalyst that soaks up chlorine gas on its surface. The adsorbed chlorine directly couples with urea to form chemical compounds that are then converted into nitrogen.
This reaction process speeds up urine electrolysis while avoiding chlorine-induced corrosion. The system works for over 200 hours at reduced voltage. As a result, it uses about 25% less electricity than water splitting systems. Now, the team plans to reduce cost further by finding a non-precious-metal catalyst since platinum is expensive.
Source: Pengtang Wang et al. Urine electrooxidation for energy–saving hydrogen generation. Nature Communications, 2025.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🌍 1PointFive Announces 50,000 Metric Ton Carbon Removal Agreement with JPMorganChase 📊 Carbon Direct Unveils First Empirical Baseline on Carbon Dioxide Removal and Environmental ...
Inside This Issue 🧪 $400M Bet on Blue Ammonia: Industry Giants Push Carbon Capture in Louisiana 🏭 Linde Signs Long-Term Agreement to Supply Industrial Gases to World-Scale Low-Carbon Ammonia Facil...
Inside This Issue 🔌 BP's Indiana Exit Is Not the Endgame for Clean Hydrogen ☀️ Cadiz Signs Second MOU for Hydrogen - Solar Development at Cadiz Ranch 🏗️ Heidelberg Materials Inaugurates Brevik CCS...
Agreement to deliver 4.8 million nature-based carbon removal credits through next-generation IFM projects while protecting over 425,000 acres of forestland HOUSTON--Anew Climate and Aurora Sustain...
ByteDance secured access to premium credits at today’s prices, reducing exposure to future cost spikes and supply issues, which will be essential in achieving its 2030 carbon neutrality target. MA...
The HyFlex earns two major 2025 awards for tackling urgent energy challenges and advancing sustainable solutions. At the intersection of innovation and sustainability, Hitachi Energy’s HyFlex™ hyd...
Gold H2 Delivers First Successful Subsurface Bio-Stimulated Hydrogen Production Field Trial
Breakthrough demonstration in California oilfield validates a new era of clean hydrogen enabled by biotechnology and advanced oilfield services provided by ChampionX LLC HOUSTON, June 25, 2025 (GL...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.