Published by Todd Bush on April 11, 2024
BOSTON, April 11, 2024 /PRNewswire/ -- The chemical sector alone is responsible for 2% of global anthropogenic CO2 emissions, and the industry depends heavily on finite fossil fuel feedstocks. The new IDTechEx report, "Carbon Dioxide Utilization 2024-2044: Technologies, Market Forecasts, and Players", explores how captured CO2 could be utilized as a feedstock for hundreds of different chemicals instead. Valorizing waste carbon dioxide has already proven profitable in the chemicals industry for polycarbonate polymers. Overall, IDTechEx forecasts revenue from CO2-derived polymers and other drop-in chemicals will exceed US$47 billion in 2044.
CO2-derived polymer production volume data from 10 different commercial players. Source: IDTechEx
>> In Other News: Bison Announces Mizuho Bank Investment in Alberta CCS Projects
Carbon capture is viewed as a key technology for achieving net-zero goals as it can decarbonize hard-to-abate sectors. However, carbon capture technologies are expensive, and regulatory pressure to decarbonize remains weak worldwide. If captured carbon can be utilized to make profitable chemical products, this revenue stream can provide an economic incentive to accelerate the uptake of CCUS (carbon capture, utilization, and storage) technologies until legislation that promotes CO2 storage emerges.
While many CO2-derived chemicals do not always represent net-negative or net-zero products, they do still represent reductions in emissions compared to the fossil fuel-based status quo and should not be overlooked as a decarbonization tool.
For more information on capturing CO2, particularly for hard-to-abate sectors such as cement, please refer to the "Carbon Capture, Utilization, and Storage (CCUS) Markets 2023-2043" market intelligence report.
Utilizing captured CO2 to make chemicals is not a far-fetched fantasy. Profitable production of CO2-derived polymers has quietly been around for decades. One of the pioneers was Asahi Kasei, which commercialized a process making aromatic polycarbonates from waste CO2 in 2002. Since then, the total annual production capacity of polycarbonate resin using this technology has reached about 1 million tonnes.
Similarly, Aramco Performance Materials has developed polycarbonate polyols ('Converge' polyols) containing up to 40% CO2, which can be used in industrial applications, including coatings and foams. In January 2024, Aether Industries, H.B. Fuller, and Saudi Aramco Technologies announced the commercialization of these polyols. Moreover, German materials company Covestro uses CO2 to produce polycarbonate and isocyanate (polyurethane precursor), and UK-based Econic Technologies recently unveiled new technology for memory foam mattresses based on captured CO₂ emissions.
High CO2 prices can be tolerated using these methods, and players have reported improved material performance. However, the product volumes and the CO2 utilization ratio in polymer manufacturing are relatively small, limiting its CO2 utilization potential. Production growth is, therefore, likely to continue to be driven by superior performance instead of CCUS regulation or voluntary carbon credits.
The existing routes to CO2-derived polymers and polymer precursors all generally rely on the same simple chemical idea: break as few strong carbon and oxygen bonds in CO2 as possible. This non-reductive approach results in a lower energy demand and, crucially, no clean hydrogen requirements.
But what about making chemicals containing many hydrogen-to-carbon bonds? Currently, clean hydrogen production is expensive and can raise costs significantly compared to fossil-based chemicals. Green hydrogen economics are only expected to improve significantly in the 2030s (driven by reductions in the price of renewable energy and improvements in electrolyzer technology), but chemical production from captured CO2 and H2 should not be written off completely in 2024.
For the full portfolio of hydrogen research from IDTechEx, please visit www.IDTechEx.com/Research/Energy.
One innovative approach is to utilize captured industrial emissions that already contain CO2 and hydrogen (such as steel mill off-gases). CO2-derived ethanol producer, LanzaTech, already has several commercial plants using this very approach. Such sources of waste hydrogen have been crucial for scaling up CO2-derived chemicals in the short term. Another example is Carbon Recycling International's first commercial-scale emission-to-liquids plant, which used hydrogen emitted from coke production to create CO2-derived methanol.
Pure carbon products such as graphene, carbon nanotubes, and carbon nanofibers have promising applications in construction, energy storage, consumer electronics, water filters, and fuel cells. Typically manufactured via chemical vapor deposition of hydrocarbon gases, the low conversion efficiency and high cost of this approach has inspired ongoing research into alternative synthesis pathways.
Electrolysis of molten salts using captured CO2 as a starting material is being pursued by companies such as SkyNano, Carbon Corp, Bergen Carbon Solutions, UP Catalyst, and Saratoga Energy. This is one of the few CO2 utilization pathways that can tolerate direct utilization of flue gas without purification/pre-concentration steps being needed. However, green electricity is required, the volumes of CO2 utilized remain small compared to global anthropogenic emissions, and this technology is yet to be demonstrated at a large scale.
For climate-conscious romantics, waste CO2 can even be utilized for engagement rings. Startups Aether Diamonds and Skydiamond offer stones made from CO2 captured directly from the atmosphere.
The chemical industry is a highly interconnected, integrated industry and has been optimized over decades. If this system is to be fundamentally changed to run on CO2 rather than on fossil feedstock, decisions to preserve, repurpose, or replace industrial assets need to take place soon. Industrial demonstrations need to ramp up. Cheap, low-carbon electricity needs to become widely available. A full account of emissions and embedded carbon in the chemical industry supply chain must be routine through carbon management.
Major concerns associated with investing and developing carbon dioxide utilization technologies to produce chemicals remain as (1) the quantity of CO2 utilized is small compared to the amount of CO2 being emitted globally, and (2) the energy required to transform CO2 into commercial products could significantly reduce the net economic and environmental benefits of utilization methods without an associated scale-up of low-cost green electricity.
To find out more about the new IDTechEx report "Carbon Dioxide Utilization 2024-2044: Technologies, Market Forecasts, and Players", including downloadable sample pages, please visit www.IDTechEx.com/CO2U.
For more information on IDTechEx's energy and decarbonization market research portfolio, please visit www.IDTechEx.com/Research/Energy.
IDTechEx provides trusted independent research on emerging technologies and their markets. Since 1999, we have been helping our clients to understand new technologies, their supply chains, market requirements, opportunities and forecasts. For more information, contact [email protected] or visit www.IDTechEx.com.
Image download:https://www.dropbox.com/scl/fo/59fi7nsis44dy3t784gom/h?rlkey=hcavxaatu9uvx4ncfgc3b6loy&dl=0
SOURCE IDTechEx
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 💰 OCED Announces up to $1.8 Billion in New Funding for Transformational Direct Air Capture Technologies 🌱 BP Announces Investment Decision for “Lingen Green Hydrogen” Project 🧪 C...
Inside This Issue 🌊 ExxonMobil Partners with Worley for Groundbreaking Blue Hydrogen Facility in Texas 🏗️ Holcim Group to Test Capsol’s Carbon Capture Technology as a Step Towards Decarbonized Cem...
Inside This Issue 💧 Revolutionizing the Green Hydrogen Market: City of Lancaster and City of Industry Launch First Public Hydrogen (FPH2)--the First Public Hydrogen Utility 🌿 Drax and Pathway Ener...
BP Announces Investment Decision for “Lingen Green Hydrogen” Project
bp has announced its final investment decision for the “Lingen Green Hydrogen” project, a major step forward in the industrial-scale development of green hydrogen in Germany. Supported by funding f...
Federal Energy Regulators to Assess Environmental Risks of Funding Northwest Hydrogen Hub
The U.S. Department of Energy is beginning its environmental impact assessment of “clean” hydrogen projects that have been proposed as part of a planned $1 billion in federal funding A year after ...
Advancements in Electrolyzer Technology Could Make Green Hydrogen Viable Sooner Than You Think
Historically, the mass production of green hydrogen has not been viewed as a viable alternative energy solution for our climate crisis. But recent technological advancements in proton exchange memb...
The U.S. Department of Energy (DOE) Office of Clean Energy Demonstrations (OCED) today opened applications for up to $1.8 billion in funding for the design, construction, and operation of mid- and ...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.