Published by Todd Bush on January 13, 2024
TOKYO--(BUSINESS WIRE)--IHI Corporation (TOKYO: 7013) announces today it and several domestic partners jointly developed the world’s first one-megawatt-class (see note 1) electric motor (note 2) mounted inside a jet engine tail cone (note 3). This achievement is one fruit of the company’s More Electric Architecture for Aircraft and Propulsion (MEAAP) project. This technological innovation initiative aims to optimize the overall energy management of aircraft systems, including engines, to help cut their carbon dioxide emissions.
>> Additional Reading: Sirius Aviation AG Unveils World's First Hydrogen VTOL Aircraft: Sirius Jet
IHI developed this motor as part of R&D into advanced electric propulsion systems and electric hybrid systems under the Research and Development of Advanced Aircraft Systems for Practical Application Project of Japan’s New Energy and Industrial Technology Development Organization.
The global passenger jet fleet should double over the next 20 years on growing travel demand, although the United Nations’ International Civil Aviation Organization targets virtually zero carbon dioxide emissions from these aircraft by 2050. It is accordingly important to improve conventional technologies while innovating aircraft systems that maintain safety and economy and make them more eco-friendly.
The MEAAP project seeks not just to electrify aircraft but also to significantly enhance fuel efficiency by optimizing aircraft systems, including engines, to reuse cabin air, which current designs discharge outside aircraft without using effectively, to cool electrical equipment. This would eliminate the need for complex conventional hydraulic, pneumatic, and other systems, thus boosting design freedom and maintainability while reducing weight. IHI is collaborating with domestic and overseas partners in various R&D efforts to achieve its MEAAP goals.
IHI’s new engine-embedded electric motor could provide power for aircraft and also serve as a key technology in hybrid electric propulsion systems for which R&D is underway around the world.
In March 2020, IHI developed a 250-kilowatt-class engine-embedded electric motor offering the largest generator capacity for currently operating passenger aircraft. At the time, it developed a high-density molded coil technology with a 300°C heat-resistant insulation coating (note 4). It has additionally developed an exhaust heat system technology that taps thermal, fluid, and structural technologies that the company cultivated in jet engine R&D. It has augmented these advances to improve efficiency by overhauling the power generation mechanism to create an electric motor that can deliver more than one megawatt of power. The motor offers output scalability as required.
For its new motor, IHI conducted assessments at the Evaluation Laboratory for Next Generation Motors of the Akita University Joint Research Center for Electric Architecture** (note 5). This is the largest such facility in Japan. This work confirmed that the company could attain the anticipated revolutions per minute when connecting the engine shaft directly to the inside of the tail cone.
IHI will keep developing hybrid electric propulsion systems to electrify aircraft, and looks to demonstrate an engine-embedded electric motor during the middle of this decade. By combining a high-power electric motor for aircraft propulsion (note 6), an electric turbo compressor (note 7), a high-flux plastic magnet rotor (note 8), and an electric hydrogen turbo-blower (note 9), which are also under development, IHI will electrify and optimize a range of propulsion systems, including hybrid electric propulsion systems for the future, and aircraft systems overall.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🧪 $400M Bet on Blue Ammonia: Industry Giants Push Carbon Capture in Louisiana 🏭 Linde Signs Long-Term Agreement to Supply Industrial Gases to World-Scale Low-Carbon Ammonia Facil...
Inside This Issue 🔌 BP's Indiana Exit Is Not the Endgame for Clean Hydrogen ☀️ Cadiz Signs Second MOU for Hydrogen - Solar Development at Cadiz Ranch 🏗️ Heidelberg Materials Inaugurates Brevik CCS...
Inside This Issue 🧩 Who Gets Left Behind? Inside the Senate Plan Reshaping America's Clean Energy Future 🌿 TMD Energy Limited Enters into Strategic Memorandum of Agreement to Advance Green Bioener...
Entropy Enters Definitive Agreement to Purchase Strategic Carbon Storage Assets
Transaction increases Entropy's customer base and expands Entropy's operations into Saskatchewan CALGARY, AB, June 23, 2025 /CNW/ - Entropy Inc. ("Entropy"), a subsidiary of Advantage Energy Ltd. ...
Paris Air Show: TotalEnergies Signs a Deal with Quatra to Secure Feedstock for its Biorefineries
TotalEnergies and Quatra, the European market leader in the collection and recycling of used cooking oil, have signed a 15-year agreement beginning in 2026, for the supply of 60,000 tons a year of ...
Funding led by Taranis will accelerate deployment of Elemental’s low-carbon platform that transforms waste into high-value carbon nanomaterials, clean hydrogen, and recovered critical minerals. HO...
First large-scale multi-panel solar-to-hydrogen system to be installed at UT Austin’s Hydrogen ProtoHub, featuring sixteen photoelectrochemical hydrogen reactors totaling more than 30m² in active a...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.