For decades, scientists have been searching for a way to make hydrogen fuel cells light and powerful enough to power aeroplanes or spacecraft.
The dream of sustainable flight often stumbled on a very practical problem: weight. Now, researchers in Denmark say they may have found a solution, inspired by coral reefs and butterfly wings.
A team at the Technical University of Denmark (DTU) has built a radically new type of fuel cell that is not only light and powerful but also resilient enough to withstand extreme conditions. Using 3D printing and a design borrowed from nature, they have created what they call the Monolith — a ceramic fuel cell that could one day cut aviation’s reliance on fossil fuels and even power missions to Mars.
>> In Other News: Advent Technologies Delivers State-of-the-Art Portable Fuel Cell Systems under Contract with the U.S. Department of Defense
Every commercial jet today relies on petroleum-based jet fuel. A long-haul aircraft might need as much as 70 tonnes of it to cross oceans. If engineers tried to replace that fuel with lithium-ion batteries of the same energy capacity, the batteries would weigh more than 3,500 tonnes — far heavier than the plane itself. Simply put, it would never get off the ground.
Fuel cells, which generate electricity through a chemical reaction rather than combustion, have long been seen as a promising alternative. But traditional designs are too heavy: more than three-quarters of a fuel cell system’s weight comes from metal components used for sealing and connectivity, limiting them to stationary applications such as hospitals or data centres.
The DTU breakthrough comes from replacing that flat, heavy structure with something much more intricate. They turned to a mathematical form called a gyroid, found in coral, butterfly wings, and even soap bubbles. Gyroidal structures are lightweight yet incredibly strong, with a huge surface area relative to their size.
By 3D printing their fuel cells in this shape, the scientists created a fully ceramic design that eliminates the need for metal parts and fragile seals. They call it the Monolithic Gyroidal Solid Oxide Cell — or simply the Monolith.
“It’s the first to demonstrate the power-to-weight ratio needed for aerospace, while using a sustainable, green technology,” said Venkata Karthik Nadimpalli, senior researcher at DTU Construct and one of the study’s lead authors.
The Monolith delivers more than one watt of power per gram — an order of magnitude better than conventional fuel cells.
It is not just the power-to-weight ratio that makes the new design stand out. The gyroidal structure also improves airflow and heat distribution inside the cell, boosting efficiency and stability.
The DTU team put their prototype through punishing tests: rapid temperature swings of 100°C, switching between generating electricity and producing hydrogen, and long operation under harsh conditions. Each time, the Monolith held together, showing no cracks or separation.
That resilience could prove crucial for space exploration. NASA’s Mars Oxygen In-Situ Resource Utilisation Experiment (MOXIE), which recently produced oxygen from the Martian atmosphere, relied on equipment weighing more than six tonnes. The Danish researchers estimate their design could achieve the same result with hardware weighing just 800 kilograms — potentially saving billions in launch costs.
Conventional solid oxide fuel cells are complex to manufacture, requiring dozens of steps and multiple materials that wear out over time. By contrast, the Monolith can be built in just five steps, thanks to 3D printing.
“By eliminating metals and fragile seals, we simplify the system while making it more durable,” explained Professor Vincenzo Esposito of DTU Energy, another lead author of the study.
The researchers believe there is still room for improvement. Using thinner electrolytes, cheaper current collectors such as silver or nickel, and even more compact layouts could make the Monolith lighter and more affordable.
Fuel cells are already familiar in hydrogen-powered cars, but the DTU breakthrough could open doors for aerospace, where energy density is critical. Aircraft, rockets, and spacecraft demand huge amounts of power but face strict weight limits. A lightweight, high-output fuel cell could be a game-changer.
The technology could also help stabilise renewable energy systems on Earth. Because fuel cells can switch between generating power and storing it as hydrogen, they could play a key role in balancing wind and solar supply with demand.
For now, the Monolith remains a research project. But its promise is clear: a fuel cell that is lighter, stronger, and more efficient than anything that has come before, built with the elegance of natural structures and the precision of modern 3D printing.
As Nadimpalli put it: “What once seemed impossible for aerospace may now be within reach.”
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🌽 Frontier Infrastructure, in Collaboration with Gevo and Verity, Launches Complete Carbon Management Platform for Ethanol Industry 🍁 Canada's CCUS Boom Hits a Wall: Why EOR is M...
Inside This Issue 💰 North America Secures $23B in Hydrogen Investments as Global Growth Pushes Toward 2030 📉 Clean Hydrogen Production Still Growing, but Slower Than Before 🤝 Schneider Electric Si...
Inside the Issue 🌎 Global Leaders Converge in Edmonton September 23-25 for Carbon Capture Canada as Federal Government Expected to Boost Industrial Carbon Pricing in Fall 2025 ✈️ Delta Partners Wi...
Hyundai Expands Education Initiatives in Georgia
Hyundai Motor America Sep 22, 2025, 10:07 ET Share this article Hyundai expands partnership with the H2GP Foundation to deliver the Hyundai Hydrogen RC Program to high school students in Bryan ...
LIVERMORE, Calif., Sept. 22, 2025 (GLOBE NEWSWIRE) -- Advent Technologies Holdings, Inc. (NASDAQ: ADN), an innovation-driven leader in fuel cells and hydrogen technologies, has delivered its next g...
First-Of-Its-Kind Solution Combines Rail Transportation, Permanent Sequestration, And Digital Carbon Tracking To Accelerate Decarbonization DALLAS, Sept. 22, 2025 /PRNewswire/ -- Frontier Infrastr...
American Airlines, Alaska Air Lead New $150 Million Sustainable Aviation Fuel Tech Fund
Global airline alliance Oneworld and a group of airlines announced the launch of the Oneworld BEV Fund, a new sustainable aviation fuel (SAF)-focused venture fund aimed at scaling the availability ...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.