Published by Todd Bush on December 4, 2024
More work is needed if we are to break the 5% efficiency barrier, but the team is confident this will be possible in the future.
Japanese scientists have developed a new means of cracking water into hydrogen fuel using sunlight. Using a special photocatalyst, this new technology could help usher in cheaper, more abundant, and sustainable hydrogen fuel for various applications.
Currently, most free hydrogen is derived from natural gas feedstocks, meaning moving away from fossil fuels for this greener option is not an option. However, this easily manufactured sunlight-powered method could prove pivotal if hydrogen is to become an alternative in the future.
“Sunlight-driven water splitting using photocatalysts is an ideal technology for solar-to-chemical energy conversion and storage, and recent developments in photocatalytic materials and systems raise hopes for its realization,” said Prof. Kazunari Domen, senior author of the article in Frontiers in Science.
“However, many challenges remain,” he added.
>> In Other News: Sublime Systems Awarded Contract with U.S. Department of Energy for Next-Generation, Clean Cement Manufacturing Plant in Holyoke, Mass.
When exposed to light, these catalysts facilitate chemical reactions that break down water into constituent parts. The concept is not new, but most existing, so-called ‘one-step’ ones are inefficient and have a meager solar-to-hydrogen energy conversion rate.
Another more sophisticated [two-step excitation system](https://pubs.acs.org/doi/10.1021/bk-2024-1468.ch001#:~:text=The photocatalysis hydrogen (H2,, material, or operational parameter). also exists, and it is more efficient. In these systems, one photocatalyst generates hydrogen from water, while another produces oxygen.
The Japanese team chose this second “two-step” water-cracking process. “Solar energy conversion technology cannot operate at night or in bad weather,” said Dr. Takashi Hisatomi of Shinshu University, another study author.
“But by storing the energy of sunlight as the chemical energy of fuel materials, it is possible to use ititit anytime and anywhere,” he added.
Domen and Hisatomi’s team produced a successful proof of concept by operating a 1,076 ft² (100 m²) reactor for three years. This reactor even performed better in real-world sunlight than in laboratory conditions.
“In our system, using an ultraviolet-responsive photocatalyst, the solar energy conversion efficiency was about one and a half times higher under natural sunlight,” said Hisatomi.
“Simulated standard sunlight uses a spectrum from a slightly high latitude region. Solar energy conversion efficiency could be higher in areas where natural sunlight has more short-wavelength components than simulated reference sunlight. However, currently, the efficiency under simulated standard sunlight is 1% at best, and it will not reach 5% efficiency under natural sunlight,” he added.
To move the technology forward and break that 5% barrier, the team says more researchers need to develop efficient photocatalysts and build larger experimental reactors.
“The most important aspect to develop is the efficiency of solar-to-chemical energy conversion by photocatalysts,” explained Domen.
“If it is improved to a practical level, many researchers will work seriously on developing mass production technology, gas separation processes, and large-scale plant construction. This will also change how many people, including policymakers, think about solar energy conversion and accelerate the development of infrastructure, laws, and regulations related to solar fuels,” he concluded.
Shinshu University is a prestigious research institution in Japan focused on innovative technologies and sustainable solutions. The university continues to lead the way in advanced studies, including renewable energy research, fostering a better future through science and education.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🧪 $400M Bet on Blue Ammonia: Industry Giants Push Carbon Capture in Louisiana 🏭 Linde Signs Long-Term Agreement to Supply Industrial Gases to World-Scale Low-Carbon Ammonia Facil...
Inside This Issue 🔌 BP's Indiana Exit Is Not the Endgame for Clean Hydrogen ☀️ Cadiz Signs Second MOU for Hydrogen - Solar Development at Cadiz Ranch 🏗️ Heidelberg Materials Inaugurates Brevik CCS...
Inside This Issue 🧩 Who Gets Left Behind? Inside the Senate Plan Reshaping America's Clean Energy Future 🌿 TMD Energy Limited Enters into Strategic Memorandum of Agreement to Advance Green Bioener...
Entropy Enters Definitive Agreement to Purchase Strategic Carbon Storage Assets
Transaction increases Entropy's customer base and expands Entropy's operations into Saskatchewan CALGARY, AB, June 23, 2025 /CNW/ - Entropy Inc. ("Entropy"), a subsidiary of Advantage Energy Ltd. ...
Paris Air Show: TotalEnergies Signs a Deal with Quatra to Secure Feedstock for its Biorefineries
TotalEnergies and Quatra, the European market leader in the collection and recycling of used cooking oil, have signed a 15-year agreement beginning in 2026, for the supply of 60,000 tons a year of ...
Funding led by Taranis will accelerate deployment of Elemental’s low-carbon platform that transforms waste into high-value carbon nanomaterials, clean hydrogen, and recovered critical minerals. HO...
First large-scale multi-panel solar-to-hydrogen system to be installed at UT Austin’s Hydrogen ProtoHub, featuring sixteen photoelectrochemical hydrogen reactors totaling more than 30m² in active a...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.