Published by Todd Bush on October 11, 2024
A team of researchers from NETL and academia has demonstrated the unique dynamic analysis capabilities available through the Lab’s Institute for the Design of Advanced Energy Systems (IDAES) to advance clean energy technologies.
>> In Other News: Toyota Showcases Technology Developments Towards a Sustainable Future
IDAES is a next-generation multi-scale modeling and optimization framework designed to support the U.S. power industry. Researchers from NETL, other national labs, and universities across the nation use IDAES to accelerate the design and deployment of integrated power, hydrogen, and industrial processes to support broad decarbonization and emerging research and development priorities.
One area of clean energy technology optimization being explored using IDAES entails the use of solid oxide cell (SOC) systems. SOCs are a promising dual-mode technology to produce hydrogen through high-temperature water electrolysis or generate power through a fuel cell reaction that consumes natural gas or hydrogen. While SOCs hold great promise for near-zero-emissions energy production, there are known challenges associated with the technology. Fortunately, some of these challenges can be mitigated through what are known as advanced control strategies — ways of optimally regulating and maintaining a system.
Recently, NETL researchers and others supporting IDAES have published a series of papers that detail how IDAES software was implemented for the following SOC applications:
Demonstrating reinforcement learning control — the paper Development of algorithms for augmenting and replacing conventional process control using reinforcement learning, by NETL’s Douglas Allan and Stephen Zitney (retired), along with Daniel Beahr and Debangsu Bhattacharyya from West Virginia University (WVU), was published in the Computers and Chemical Engineering journal. The paper details how a machine learning approach called reinforcement learning control can be used to refine and improve conventional control for chemical and power systems.
Applying a nonlinear predictive control to an SOC — the paper Nonlinear model predictive control for mode-switching operation of reversible solid oxide cell systems, by Allan, Zitney, and Bhattacharyya, along with Nishant Giridhar from WVU and Mingrui Li, San Dinh, and Lorenz T. Biegler from Carnegie Mellon University, explained how the team applied advanced system controls to reduce temperature gradients for solid oxide cells during fast operational ramping, improving long-term cell life and thus reducing costs.
Optimizing solid oxide cell hydrogen production while including cell chemical degradation — the paper Optimal operation of solid-oxide electrolysis cells considering long-term chemical degradation, by Allan, Zitney, Bhattacharyya, Giridhar, Li, and Biegler, was published in the Energy & Conversion Management journal. The paper outlined how to optimize the performance of solid oxide electrolysis cells for long-term hydrogen production at high temperatures, reducing the hydrogen cost by over 9%.
NETL is a U.S. Department of Energy national laboratory that drives innovation and delivers solutions for an environmentally sustainable and prosperous energy future. By leveraging its world-class talent and research facilities, NETL is ensuring affordable, abundant, and reliable energy that drives a robust economy and national security, while developing technologies to manage carbon across the full life cycle, enabling environmental sustainability for all Americans.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🌏 A Bold Transpacific Alliance: ExxonMobil and Marubeni Power a Cleaner Future with Low-Carbon Ammonia 💰 Aker Carbon Capture Has Decided to Sell Its 20 Percent Ownership Interest...
Inside This Issue 🌊 NYK Partners With Climeworks to Remove CO₂ Through Diverse Carbon Removal Solutions 🛠️ First Public Hydrogen (FPH2) Appoints Ernesto Medrano to Board of Directors 💡 Kinetics Ac...
Inside This Issue 📊 Trading Carbon Right: Why Credit Quality Matters More Than Ever ☀️ SunHydrogen Contracts The Process Group for Front-End Engineering Design of 25m2 Renewable Hydrogen Pilot Pla...
Canada’s Bold Path to Net-Zero: How the Pathways Alliance Is Reshaping Oilsands and Carbon Capture
A united front for a cleaner future In Canada’s race to reach net-zero emissions by 2050, few initiatives carry as much weight—or as much promise—as the $16.5 billion carbon capture and storage (C...
Project Hajar Earns Top XPRIZE Carbon Award for Direct Air Capture and Storage in UAE
Project Hajar, a joint initiative by 44.01 and Aircapture, has been named the strongest performer in the Air category of the XPRIZE Carbon Removal competition, earning a \$1 million award. The proj...
BKV Corporation (“BKV” or the “Company”) (NYSE: BKV) today announced the formation of a strategic joint venture (the “JV”) between BKV dCarbon Ventures, LLC (“dCarbon Ventures”), BKV’s wholly-owned...
Microsoft Expands World’s Largest Carbon Removal Deal with Stockholm Exergi to 5M Tonnes
World’s largest annual CDR delivery deal: Microsoft'’s expanded agreement now totals 5.08M tons, with 500,000 tons captured annually. $1.3B BECCS facility operational by 2028: Stockholm Exergi’s p...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.