Published by Todd Bush on August 9, 2024
A team of Australian and Japanese scientists has developed an effective catalyst with the remarkable ability to enhance the efficiency of ammonia conversion, which could significantly advance wastewater treatment, green nitrite and nitrate, as well as hydrogen production.
Catalysts are substances that speed up chemical reactions by providing a more efficient route for a reaction to occur and making it easier to start and finish. Since catalysts are neither consumed nor altered in the reaction, they can be used repeatedly, and they are essential in a variety of industrial, environmental, and biochemical processes.
Scanning electron micrograph of the catalyst, NiOOH-Ni, developed in this study. (Hanwen Liu, et al. Advanced Energy Materials. August 7, 2024)
>> In Other News: Hackberry Carbon Sequestration Launches
The team, which included researchers from Hokkaido University, the University of Technology Sydney (UTS) and elsewhere, developed the catalyst, called NiOOH-Ni, by combining nickel (Ni) with nickel oxyhydroxide.
Ammonia can cause severe environmental problems, such as excessive algal growth in water bodies, which depletes oxygen and harms aquatic life. At high concentrations, ammonia can harm humans and wildlife. Effective management and conversion of ammonia are thus critical, but its corrosive nature makes it difficult to handle.
The researchers developed NiOOH-Ni using an electrochemical process. Nickel foam, a porous material, was treated with an electrical current while immersed in a chemical solution. This treatment resulted in the formation of nickel oxyhydroxide particles on the foam’s surface.
Despite their irregular and non-crystalline structure, these nickel-oxygen particles significantly enhance ammonia conversion efficiency. The catalyst’s design allows it to operate effectively at lower voltages and higher currents than traditional catalysts.
Electrolysis of ammonia aqueous solution produces nitrite and nitrate on the NiOOH-Ni anode, and green hydrogen on the Ni2P-Ni cathode. This presents advantages over the currently used thermal ammonia cracking due to the simultaneous formation of hydrogen as an energy carrier and nitrite and nitrate as valuable chemicals under ambient conditions. (Hanwen Liu, et al. Advanced Energy Materials. August 7, 2024)
“NiOOH-Ni works better than Ni foam, and the reaction pathway depends on the amount of electricity (voltage) used,” explains Professor Zhenguo Huang from the University of Technology Sydney, who led the study.
“At lower voltages, NiOOH-Ni produces nitrite, while at higher voltages, it generates nitrate.”
This means the catalyst can be used in different ways depending on what is needed. For example, it can be used to clean wastewater by converting ammonia into less harmful substances. But in another process, it can also be used to produce hydrogen gas, a clean fuel. This flexibility makes NiOOH-Ni valuable for various applications.
“NiOOH-Ni is impressively durable and stable, and it works well even after being used multiple times,” says Associate Professor Andrey Lyalin from Hokkaido University, who was involved in the study.
“This makes it a great alternative to traditional, more expensive catalysts like platinum, which aren’t as effective at converting ammonia.”
The catalyst’s long-term reliability makes it suitable for large-scale industrial use, potentially transforming how industries handle wastewater and produce clean energy.
The study has been published in Advanced Energy Materials.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue ⚡ DOE Floats New Cuts To Hundreds Of Clean Energy Grants ⛏️ HyTerra Limited Announces Positive Results From McCoy 1 Well 🍁 As Policy Changed, CarbonCapture Moved Its Pilot Projec...
Inside This Issue 🚢 CF Industries, Trafigura, and Envalior Announce Shipment of Certified Low-Carbon Ammonia 🥤 Skytree Validates DAC System to Generate Pure, Beverage-Grade Liquid CO₂ On-Site 💻 Su...
Inside This Issue 💰 Louisiana's $3.5B Carbon Capture Surge Sets National Decarbonization Blueprint 🌍 UN Climate Summit To Feature First-Ever Carbon Removal Pavilion At COP30 🚛 AtmosClear Selects E...
Air Liquide is enhancing its strategic U.S. Gulf Coast network to support new customers' needs. The Group has secured new hydrogen supply agreements with two of the largest refiners in the U.S. and...
As Policy Changed, CarbonCapture Moved Its Pilot Project From Arizona to Alberta
This innovative climate tech startup just moved its first big project from the U.S. to Canada as Trump threatens the industry. At the beginning of this year, a climate tech startup called CarbonCa...
HyTerra Limited Announces Positive Results From McCoy 1 Well
HyTerra Limited (ASX: HYT), a company focused on exploring for natural hydrogen and helium resources near major industrial hubs and the first company to list on the ASX with a focus on white hydrog...
Prometheus Hyperscale Works With Carbon Capture Firms On New Data Center Campus In Wyoming
Says the gas-powered facility will be carbon negative Prometheus Hyperscale has revealed plans for a second AI data center campus in Wyoming, which it says could eventually deliver 1.5GW of IT cap...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.