A novel crystallizer has shown promise in lowering costs for direct-air capture (DAC) of CO2 emissions. In recent work published in Nature Chemical Engineering, a research team from the University of Toronto, led by mechanical and industrial engineering professor David Sinton, details a crystallizer unit designed to convert CO2 from air directly into solid potassium carbonate crystals. “The device continuously wicks a potassium hydroxide (KOH) solution along fine polypropylene capillaries, and as natural wind flows over the surface, the water evaporates and the solution becomes more concentrated. Once concentrated, the KOH reacts immediately with CO2 in the air, forming solid carbonate crystals directly on the surface,” explains Dongha Kim, lead author on the new paper.
>> In Other News: Hydrogen Found in America — It’s Enough to Produce 104 MW and Power 25,000 Homes
This passive, evaporative carbonate crystallization accelerates the reaction to form potassium carbonate by leveraging a newly discovered capture mechanism of KOH at ultra-high concentrations. Other DAC solutions have looked at porous, honeycomb-style materials to increase surface area, and thus reaction rate, but Kim says the team’s work instead focused on “long strands of polypropylene fiber immersed in a solution of potassium hydroxide.” This configuration enables the system to achieve extremely high KOH concentrations, which supports much faster CO2 capture — with a reported six-fold increase in capture flux over traditional DAC systems.
Conventional DAC plants often rely on large, energy-intensive fans and operate with a liquid-phase capture mechanism that requires additional solidification and filtration steps. In the new crystallizer, CO2 is solidified instantly, reducing process complexity and thereby lowering costs. “There are many challenges to removing carbon dioxide from the atmosphere, but none greater than cost,” emphasizes Sinton.
The technology has so far been demonstrated at the laboratory scale, with stable CO2 capture performance over a month of operation. The team foresees a modular and fully automated crystallizer design that can easily be scaled. “Because the crystallizer unit is structurally simple, we expect rapid and low-cost expansion through direct replication of these modules. Our next step is to deploy multiple crystallizer modules in parallel and expand the system to areas on the order of tens to hundreds of square meters. We also plan to integrate these crystallizer units with a large-scale electrochemical KOH regeneration system, enabling continuous CO2 capture and sorbent regeneration within a unified process,” says Kim.
Since the sorbent can be continuously recycled, the crystallization process does not create any notable waste streams. The high-purity CO2 generated in the process can be sequestered underground, or used in downstream chemical processes.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue ⚡ Cummins Quit Electrolyzers. Electric Hydrogen Didn't. 🧪 New Electrified Method Captures Carbon Dioxide From Air 🌾 Iowa Could Be on the Cusp of a Hydrogen Rush; Lawmakers Weigh ...
Inside This Issue ⚡ Duke Energy Florida Goes Live With First 100% Hydrogen System ✈️ Air bp Signs Agreement With Airbus on Flight Services and Fuel Supplies in Europe 🌊 Pairing Reefs and Mangroves...
Inside this Issue 🌽 Three Nebraska Plants Prove Ethanol CCS Actually Works ☀️ SunHydrogen and CTF Solar Sign Agreement to Accelerate Hydrogen Panel Manufacturing 🧪 GenH2 Completes Major Milestone:...
• The long-term contract guarantees operational readiness and enables the start of construction in the second quarter of 2026 • The project positions Mexico as a reliable supplier of ultra-low car...
Funding accelerates commercial deployment of Utility's H2Gen® technology, which produces cost-effective clean hydrogen and highly concentrated CO₂ streams, enabling at-scale economic decarbonizatio...
A Firm Capturing Carbon at NYC High-Rises Tackles Canadian Gas Pipelines
CarbonQuest’s new project cutting emissions from an engine along a gas pipeline could help it scale to applications at universities, AI data centers, and factories. Startup CarbonQuest already pro...
Nova Scotia’s CarbonRun Reaches Carbon Capture Milestone With ‘River Liming’ Project
HALIFAX — A Nova Scotia-based company has accomplished a milestone in the world of carbon capture, with its project to store carbon dioxide in rivers using limestone. CarbonRun, co-founded by Dalh...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.