Published by Todd Bush on September 24, 2024
Dr. William Scheideler elaborates on Perovskite solar cells and green hydrogen generation through electrocatalysts
SANTA CLARITA, Calif., Sept. 24, 2024 (GLOBE NEWSWIRE) -- NewHydrogen, Inc. (OTCMKTS), the developer of ThermoLoop™, a breakthrough technology that uses water and heat rather than electricity to produce the world’s cheapest green hydrogen, today announced a podcast featuring CEO Steve Hill and Dr. William Scheideler, Associate Professor at Dartmouth College’s Thayer School of Engineering, on scalable nanomanufacturing and 3D materials for energy applications, Perovskite solar cells, green hydrogen generation through electrocatalysis, and hydrogen energy storage.
>> In Other News: CarbonBuilt Collaborates with Meta to Accelerate Production of Ultra-Low Carbon Concrete
Dr. Scheideler briefly introduced the work being done at his research group. Perovskite solar cells are a new breed of ultra-thin, lightweight solar cells that can be manufactured using printing techniques, offering the potential for low cost and high efficiency. His research group is developing earth-abundant materials for electrocatalysis, aiming to replace expensive platinum and iridium oxide catalysts used in water electrolysis. Dr. Scheideler said, “We are somewhere in between the basic science and the applied sciences, and in terms of energy, we work on two major renewable energy topics: Perovskite solar cells and the generation of green hydrogen through electrocatalysis and water splitting.”
Hydrogen is presented as a promising solution for storing intermittent renewable energy, offering an alternative to battery storage and pumped hydro systems. Regarding the hydrogen production cost target of $1/kg, set by the United States Department of Energy, Dr. Scheideler said, “We should use earth-abundant materials that may be a little bit less active but can be much more commercially viable. Our approach is to create an ordered structure so that the hydrogen and oxygen bubbles can work their way through in a systematic way, thus increasing efficiency.”
As for the storage of energy, Dr. Scheideler said, “Batteries are still too expensive to really compete at scale. Hydrogen is a better approach, especially if you have times of the day where you have excess energy generation from renewable energy, including wind and solar.”
Dr. William Scheideler graduated with BSE degrees in electrical engineering and biomedical engineering from Duke University, and a PhD in electrical engineering from UC Berkeley. He then worked as a postdoctoral scholar in the Department of Materials Science & Engineering at Stanford University. His research focuses on developing new materials and nanomanufacturing methods for high-performance printed and flexible devices, including low-power sensors and energy harvesting for hybrid electronics.
Dr. Scheideler is listed as Google Scholar at https://scholar.google.com/citations?user=OvFn77MAAAAJ.
Watch the full discussion on the NewHydrogen Podcast featuring Dr. William Scheideler at Professor William Scheideler Dartmouth College | NewHydrogen.
For more information about NewHydrogen, please visit https://newhydrogen.com.
NewHydrogen is developing ThermoLoop™ – a breakthrough technology that uses water and heat rather than electricity to produce the world’s lowest-cost green hydrogen. Hydrogen is the cleanest and most abundant element in the universe, and we can’t live without it. Hydrogen is the key ingredient in making fertilizers needed to grow food for the world. It is also used for transportation, refining oil, and making steel, glass, pharmaceuticals, and more. Nearly all the hydrogen today is made from hydrocarbons like coal, oil, and natural gas, which are dirty and limited resources. Water, on the other hand, is an infinite and renewable worldwide resource.
Currently, the most common method of making green hydrogen is to split water into oxygen and hydrogen with an electrolyzer using green electricity produced from solar or wind. However, green electricity is and always will be very expensive. It currently accounts for 73% of the cost of green hydrogen. By using heat directly, we can skip the expensive process of making electricity and fundamentally lower the cost of green hydrogen. Inexpensive heat can be obtained from concentrated solar, geothermal, nuclear reactors, and industrial waste heat for use in our novel low-cost thermochemical water-splitting process. Working with a world-class research team at UC Santa Barbara, our goal is to help usher in the green hydrogen economy that Goldman Sachs estimated to have a future market value of $12 trillion.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 💰 OCED Announces up to $1.8 Billion in New Funding for Transformational Direct Air Capture Technologies 🌱 BP Announces Investment Decision for “Lingen Green Hydrogen” Project 🧪 C...
Inside This Issue 🌊 ExxonMobil Partners with Worley for Groundbreaking Blue Hydrogen Facility in Texas 🏗️ Holcim Group to Test Capsol’s Carbon Capture Technology as a Step Towards Decarbonized Cem...
Inside This Issue 💧 Revolutionizing the Green Hydrogen Market: City of Lancaster and City of Industry Launch First Public Hydrogen (FPH2)--the First Public Hydrogen Utility 🌿 Drax and Pathway Ener...
BP Announces Investment Decision for “Lingen Green Hydrogen” Project
bp has announced its final investment decision for the “Lingen Green Hydrogen” project, a major step forward in the industrial-scale development of green hydrogen in Germany. Supported by funding f...
Federal Energy Regulators to Assess Environmental Risks of Funding Northwest Hydrogen Hub
The U.S. Department of Energy is beginning its environmental impact assessment of “clean” hydrogen projects that have been proposed as part of a planned $1 billion in federal funding A year after ...
Advancements in Electrolyzer Technology Could Make Green Hydrogen Viable Sooner Than You Think
Historically, the mass production of green hydrogen has not been viewed as a viable alternative energy solution for our climate crisis. But recent technological advancements in proton exchange memb...
The U.S. Department of Energy (DOE) Office of Clean Energy Demonstrations (OCED) today opened applications for up to $1.8 billion in funding for the design, construction, and operation of mid- and ...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.