Published by Todd Bush on November 5, 2024
SANTA CLARITA, Calif., Nov. 05, 2024 (GLOBE NEWSWIRE) -- NewHydrogen, Inc. (OTCMKTS), the developer of ThermoLoop™, a breakthrough technology that uses water and heat rather than electricity to produce the world’s cheapest green hydrogen, today announced a podcast featuring CEO Steve Hill and Dr. Jackson Ewing, Director of Energy and Climate Policy at Duke University. This discussion highlights the strategic actions needed to promote green hydrogen adoption and establish a low-carbon future.
>> In Other News: HYCO1 Announces the First Commercial Operation of its Breakthrough CO2 Conversion Technology, Achieving TRL-9 Status
Dr. Ewing highlighted the ‘Catch-22’ dynamic in the hydrogen sector, where a lack of demand hinders investment in supply, and vice versa. He emphasized the need for a comprehensive approach, including incentives, infrastructure development, and market mechanisms to address this challenge. Promising demand drivers for hydrogen were identified, such as ammonia, long-haul trucking, and industrial processes, where green hydrogen could replace traditional fossil fuels.
As an advocate for policy interventions, Dr. Ewing discusses the importance of production tax credits, permitting reform, carbon pricing mechanisms, and low-carbon fuel standards to accelerate green hydrogen adoption. He argues that the hydrogen sector has the potential to thrive under various political climates, stressing the need for a robust and durable policy framework to ensure long-term investment and growth.
Dr. Ewing further emphasized the importance of bipartisan support and collaboration in developing a vibrant green hydrogen sector, recognizing its significance for national energy security and climate goals. Such support is key to creating a stable and resilient hydrogen economy.
Dr. Jackson Ewing holds a Doctorate in Environmental Security and a Master’s Degree in International Relations from Australia’s Bond University, and a Bachelor’s Degree in Political Science from the College of Charleston. He is currently Director of Energy and Climate Policy at the Nicholas Institute of Energy, Environment & Sustainability at Duke University. Dr. Ewing also holds appointments as an Adjunct Associate Professor at the Nicholas School of the Environment, Faculty Affiliate with the Duke Center for International Development at the Sanford School of Public Policy, and Faculty Lead for the Duke Kunshan University International Masters of Environmental Policy program. His work seeks to facilitate energy transitions globally and within the United States. Dr. Ewing’s projects focus on international climate finance, just energy transition partnerships, systems-level changes to meet net-zero goals in the U.S., international carbon pricing and clubs, and U.S.-China climate relations. His expertise extends across over 20 countries, with close collaboration with government, private sector, civil society, and international organizations.
Dr. Ewing's Google Scholar profile can be accessed at https://scholar.google.com/citations?user=E4bAXpMAAAAJ.
Watch the full discussion on the NewHydrogen Podcast featuring Dr. Jackson Ewing at https://newhydrogen.com/videos/ceo-podcast/jackson-ewing-phd-duke-university.
For more information about NewHydrogen, please visit https://newhydrogen.com/.
NewHydrogen is developing ThermoLoop™ – a breakthrough technology that uses water and heat rather than electricity to produce the world’s lowest-cost green hydrogen. Hydrogen, the cleanest and most abundant element, plays a critical role in numerous industries, from fertilizer production to transportation and steel manufacturing. Nearly all current hydrogen is produced from hydrocarbons, which are polluting and finite. In contrast, water is an infinite and renewable resource.
Today, most green hydrogen is produced by splitting water into oxygen and hydrogen using an electrolyzer powered by green electricity from solar or wind. However, green electricity is costly, comprising 73% of green hydrogen’s current production cost. ThermoLoop™ offers a direct heat-based alternative, bypassing the need for costly electricity and fundamentally reducing green hydrogen’s cost. Concentrated solar, geothermal, nuclear reactors, and industrial waste heat are potential heat sources for ThermoLoop™’s low-cost thermochemical water splitting process. Working with a top-tier research team at UC Santa Barbara, NewHydrogen aims to enable the $12 trillion green hydrogen economy projected by Goldman Sachs.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🏭 CF Industries Flips Switch on Massive CCS Hub That Changes Everything 🧴 Scientists Transform Plastic Waste Into Efficient CO2 Capture Materials ⚡ SHS Group and Verso Energy Sig...
Inside This Issue 🏭 CF Industries Announces Start-up of Donaldsonville Complex CO2 Dehydration and Compression Unit, Permanent CO2 Sequestration 📉 EIA: US Biodiesel And Renewable Diesel Imports Fa...
Inside This Issue 💧 Hydrogen Hubs Hit $10B by 2035: The Real Projects Behind the Numbers 🛑 Shell Scraps Construction of Biofuels Plant in Rotterdam ⚙️ Carbon Capture Made Scalable: Decarbontek Deb...
CleanCounts Selected as an Awardee of LevelTen Energy’s Registry Acceleration Fund
Building on Existing 2019 Agreement, North America's Largest Registry to Enable Fractionalized REC Transactions for All Generators in MISO MINNEAPOLIS, Sept. 08, 2025 (GLOBE NEWSWIRE) -- Today, Cl...
SHS Group and Verso Energy Sign Groundbreaking Hydrogen Contract
The SHS - Stahl-Holding-Saar Group (SHS Group) with its shareholdings Dillinger (Aktien-Gesellschaft der Dillinger Hüttenwerke), Saarstahl (Saarstahl Aktiengesellschaft) and ROGESA (ROGESA Roheisen...
US Scientists Harness Sunlight To Capture CO2 In Low-Energy Breakthrough
Scientists have tried countless ways to capture carbon. But what if something as simple and abundant as sunlight could do the trick? Richard Y. Liu, assistant professor at Harvard, has developed a...
Hawaiian Airlines on Aug. 29 announced it will be incorporating sustainable aviation fuel (SAF) on flights between Osaka, Japan, and Honolulu, Hawai‘i under a sales agreement between parent company...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.