Published by Todd Bush on December 2, 2024
A ‘covalent organic framework’ can be used to capture carbon to store it or convert it for industrial use
An innocuous yellow powder, created in a lab, could be a new way to combat the climate crisis by absorbing carbon from the air. Just half a pound of the substance may remove as much carbon dioxide as a tree can, according to early tests. Once the carbon is absorbed, it can be safely stored or used in industrial processes like carbonating drinks.
“This really addresses a major problem in the tech field, and it gives an opportunity now for us to scale it up and start using it,” says Omar Yaghi, a chemist at the University of California, Berkeley. It’s not the first material to absorb carbon, but “it’s a quantum leap ahead [of other compounds] in terms of the durability of the material.”
>> RELATED: New Discovery Reveals How Diatoms Capture Carbon Dioxide So Effectively
The powder is known as a covalent organic framework, with strong chemical bonds that pull gases out of the air. This material is durable, porous, and reusable hundreds of times, making it superior to other materials used for carbon capture.
Yaghi has been researching similar materials for decades as part of a broader effort to capture carbon from the air. His latest work, conducted with graduate student Zihui Zhou and others, was published in the journal Nature last month.
In lab tests, Yaghi’s team demonstrated that the powder could successfully absorb and release carbon more than 100 times. It fills with carbon in about two hours and only requires a temperature of 120°F to release the gas, making it far more efficient than other methods.
This low-temperature requirement opens up possibilities for integrating the material into existing systems. Factories or power plants with excess heat could use it to capture and release carbon without adding significant energy costs.
>> In Other News: Germany's Green Hydrogen Ramp-up Reliant on Public Money, E.ON Says
Yaghi envisions building large-scale facilities using the material in cities with populations over 1 million worldwide. His Irvine, California-based company, Atoco, plans to scale up production, aiming to manufacture the powder in multi-ton quantities within a year.
Shengqian Ma, a chemist at the University of North Texas, calls the technology "gamechanging." He notes, “One longstanding challenge for direct air capture lies in the high regeneration temperatures,” and adds that the new material’s efficiency makes it “very novel” and “very promising.”
“We need to reduce our greenhouse emissions, and we need to do it fast,” says Farzan Kazemifar, an associate professor in the department of mechanical engineering at San Jose State University, who was not involved in the study. “In the short term, replacing large emitters of carbon dioxide – like coal power plants – with renewable electricity offers the fastest reduction in emissions.”
However, Kazemifar highlights the need for technologies like direct air capture if emissions don’t decline quickly enough or if global warming effects worsen. He emphasizes that carbon removal technologies are an essential backup strategy.
Despite its promise, direct air capture still faces significant challenges. The concentration of carbon dioxide in the air, though rising, is only about 0.04%, meaning any capture technology must process vast amounts of air. This process requires substantial energy to power fans and other components, which remains a major hurdle.
Kazemifar explains, “The high energy intensity of the process is the main challenge with all [direct air capture] technologies.” Meanwhile, researchers at MIT have raised concerns that some climate stabilization plans overestimate the feasibility and scalability of direct air capture systems.
Another barrier is the cost of materials for creating carbon capture substances. Shengqian Ma notes that while the technology is promising, reducing material costs will be critical for its widespread adoption.
Still, Yaghi believes the new material offers a significant step forward. “This is something we’ve been working on for 15 years, that basically addresses some of the lingering problems,” he says. “It gives no excuse now for us [not] to start thinking more seriously about taking carbon dioxide out of the air.”
Atoco is a cutting-edge company focused on developing innovative solutions for carbon capture and storage. Based in Irvine, California, Atoco is dedicated to scaling groundbreaking technologies to combat climate change and reduce greenhouse gas emissions globally.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue ✈️ SAF Isn’t a Buzzword Anymore - It’s 2025’s Breakout Fuel 🏅 Global Energy Prize Awarded to Three Scientists From China, USA and Russia ⚡ ACES Delta I Hydrogen Production and St...
Inside This Issue 🛢️ Exxon's Gas Strike, EPA Smackdown, and Carbon Curveball 🏭 MHI Awarded Contract for Basic Design of Japan's Largest CO₂ Capture Plant at Hokkaido Electric Power's Tomato-Atsuma...
Inside This Issue 🌊 The Quiet Rise of Offshore CO2 Storage: North America's Emerging Frontier for Carbon Capture 🍁 Canada Invests in Carbon Capture and Storage in Alberta 🛰️ Vortex Energy Finalize...
Spiritus Technologies PBC Plans Santa Fe, New Mexico, Operations
Spiritus Technologies PBC, a company engaged in sustainable carbon removal, plans to establish operations in Sante Fe, New Mexico. The project is expected to create 40 jobs. The company will lease...
ACES Delta I Hydrogen Production and Storage
World’s largest green hydrogen storage facility being developed in Utah with funding from the U.S. Department of Energy (DOE) Loan Programs Office will help scale low-carbon energy for western stat...
Partnership Signals Breakthrough Collaboration in Carbon Removal and Sustainable Fuel Development for $1 Billion Clean Fuels Facility Monroe Sequestration Partners (MSP), a premier carbon storage ...
National Carbon Capture Center Launches Novel UNOGAS MK3 Solvent Testing
A significant step forward in carbon capture is underway at the National Carbon Capture Center, where KC8 Capture Technologies' (KC8) advanced UNOGAS system – featuring the innovative UNO MK3 solve...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.