Published by Todd Bush on January 20, 2025
When burned or used in fuel cells, hydrogen produces nothing but water, making it an ideal candidate for reducing global carbon emissions. Yet, most of the hydrogen produced today comes from fossil fuels, releasing significant amounts of carbon dioxide into the atmosphere. But now, researchers may have found a way to create carbon-free hydrogen.
A group of researchers, led by Professors Takashi Hisatomi and Kazunari Domen, built a 100-square-meter reactor that uses sunlight and photocatalysts to split water into hydrogen and oxygen. This process bypasses traditional photovoltaic-based methods, which convert sunlight into electricity before splitting water.
>> In Other News: World’s First Ship With Full Carbon Capture & Storage System Ready For Pilot Testing
The new process relies on sheets of a photocatalyst called SrTiO3:Al, which are submerged in water. Sunlight activates the photocatalyst, splitting water into its molecular components. The gases can then be collected for storage and use. Because it utilizes sunlight for power, this method creates clean, carbon-free hydrogen.
Unlike traditional methods, which lose efficiency in each energy conversion stage, this direct approach minimizes energy losses. The concept itself is groundbreaking. However, efficiency remains a significant hurdle. Current systems achieve just 1% efficiency under simulated sunlight and less than 5% in natural sunlight.
For comparison, state-of-the-art solar cells convert over 20% of sunlight into electricity. Improving efficiency is crucial not only to reduce costs but also to make reactors compact enough to practically rely on for carbon-free hydrogen production.
The researchers believe that advancing photocatalyst materials holds the key to scaling up this technology. We’ve also seen other attempts by researchers to bring clean hydrogen to a scalable level using similar techniques. However, they all suffer from the same scaling issue.
Despite its challenges, carbon-free hydrogen production offers a pathway to cleaner energy and industries. With better photocatalysts and increased investment, this technology could revolutionize how we produce hydrogen and accelerate the transition to a carbon-free economy—something we badly need in our failing fight against climate change.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🌲 Living Carbon Announces Agreement with Microsoft for 1.4 Million Tonnes of Carbon Removal from Reforestation of Former Mine Lands in Appalachia 🏭 US Energy Expands Carbon Captu...
Inside This Issue 🧬 Occidental's Bold Bet on Carbon Removal: What the Holocene Acquisition Really Means 🌊 Project to Suck Carbon Out of Sea Begins in UK 🧱 NovoMOF Raises $5.4 Million to Scale Up L...
Inside This Issue 🧪 CF Industries Announces Joint Venture with JERA Co., Inc., and Mitsui & Co., Inc., for Production and Offtake of Low-Carbon Ammonia 🪨 Microsoft Signs Large Carbon Removal D...
Anaergia and Capwatt Sign Binding Letter of Intent for Nine New Biogas Plants in Europe
Follow-up agreement builds on past cooperation between the companies TREVIGLIO, Italy & BURLINGTON, Ontario--(BUSINESS WIRE)--Anaergia Inc. (“Anaergia”, the “Company”, “us”, or “our”) (TSX:ANR...
Cummins Launches Next-Gen Battery Energy Storage Systems (BESS) in the UAE Middle East - English USA
Cummins Arabia and Cummins Middle East jointly launched Cummins' new Battery Energy Storage Systems (BESS) at an exclusive event held in Dubai on Monday, April 14. The launch was attended by key cu...
Living Carbon, a public benefit company transforming degraded and underutilized land into high quality environmental assets, announced today that Microsoft has agreed to purchase 1.4 million tonnes...
NovoMOF Raises $5.4 Million to Scale Up Low-Cost Carbon Capture Materials
novoMOF said it has raised CHF 4.4 million (USD $5.4 million) to further advance its sustainable materials for low-cost carbon capture in high-emissions industrial sectors. Founded in 2017 as a sp...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.