Published by Todd Bush on December 9, 2024
OSU scientists have more than doubled a MOF’s carbon capture capacity using ammonia gas, creating a stable, energy-efficient alternative to traditional sorbents. This breakthrough highlights the potential of metal-organic frameworks (MOFs) in reducing industrial CO2 emissions.
>> In Other News: Enviro Group: CO2 Capture Legislation Has Problems
Scientists at Oregon State University (OSU) have developed a method to enhance the uptake ability of MOFs, a chemical structure that scrubs carbon dioxide from industrial emissions. In the United States, industrial activities account for 16% of total CO2 emissions, according to the Environmental Protection Agency.
The OSU team, led by Kyriakos Stylianou, associate professor of chemistry in the College of Science, focused on a copper-based MOF. They found its CO2 adsorption capacity more than doubled after exposure to ammonia gas. “The capture of CO2 is critical for meeting net-zero emission targets,” said Kyriakos Stylianou. “MOFs have shown a lot of promise because of their porosity and structural versatility.”
MOFs are crystalline materials composed of positively charged metal ions and organic linker molecules. Their nanosized pores adsorb gases, functioning like a sponge for CO2.
The flexibility in designing MOFs allows researchers to customize their properties, creating millions of potential structures. Over 100,000 MOFs have been synthesized so far, with applications ranging from gas capture to energy storage, drug delivery, and water purification.
The specific MOF used in this study, mCBMOF-1, achieved a carbon uptake capacity comparable to or better than traditional amine-based sorbents. Unlike traditional sorbents, MOFs are more stable and require less energy for regeneration, achieved in this case by simple water immersion.
“The MOF is activated by removing water molecules to expose four closely positioned open copper sites,” explained Kyriakos Stylianou. “We then introduce ammonia gas, which occupies one site, leaving the remaining sites to attract CO2 and promote interactions to form carbamate species.”
These carbamates, which have industrial, agricultural, and medical uses, are released during the water immersion process, regenerating the MOF for further use.
This study demonstrates that MOF structures can be tailored with functional groups to target specific molecules like carbon dioxide. Such innovations open doors for applying similar techniques to other gases and MOFs.
“Our study’s use of sequential pore functionalization to enhance CO2 uptake without significantly increasing regeneration energy is a terrific development,” said Kyriakos Stylianou. “The formation of a copper-carbamic acid complex within the pores suggests strong and selective interactions with CO2, which is crucial for ensuring that CO2 is preferentially adsorbed over other gases in flue emissions.”
The findings highlight the versatility and scalability of MOFs, providing new opportunities for industrial carbon capture and beyond.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🌲 Living Carbon Announces Agreement with Microsoft for 1.4 Million Tonnes of Carbon Removal from Reforestation of Former Mine Lands in Appalachia 🏭 US Energy Expands Carbon Captu...
Inside This Issue 🧬 Occidental's Bold Bet on Carbon Removal: What the Holocene Acquisition Really Means 🌊 Project to Suck Carbon Out of Sea Begins in UK 🧱 NovoMOF Raises $5.4 Million to Scale Up L...
Inside This Issue 🧪 CF Industries Announces Joint Venture with JERA Co., Inc., and Mitsui & Co., Inc., for Production and Offtake of Low-Carbon Ammonia 🪨 Microsoft Signs Large Carbon Removal D...
Anaergia and Capwatt Sign Binding Letter of Intent for Nine New Biogas Plants in Europe
Follow-up agreement builds on past cooperation between the companies TREVIGLIO, Italy & BURLINGTON, Ontario--(BUSINESS WIRE)--Anaergia Inc. (“Anaergia”, the “Company”, “us”, or “our”) (TSX:ANR...
Cummins Launches Next-Gen Battery Energy Storage Systems (BESS) in the UAE Middle East - English USA
Cummins Arabia and Cummins Middle East jointly launched Cummins' new Battery Energy Storage Systems (BESS) at an exclusive event held in Dubai on Monday, April 14. The launch was attended by key cu...
Living Carbon, a public benefit company transforming degraded and underutilized land into high quality environmental assets, announced today that Microsoft has agreed to purchase 1.4 million tonnes...
NovoMOF Raises $5.4 Million to Scale Up Low-Cost Carbon Capture Materials
novoMOF said it has raised CHF 4.4 million (USD $5.4 million) to further advance its sustainable materials for low-cost carbon capture in high-emissions industrial sectors. Founded in 2017 as a sp...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.