On the south coast of England, something quietly powerful is happening. A small pilot project named SeaCURE is pulling carbon straight out of the ocean—and sending it back to sea, ready to absorb even more. It sounds like science fiction, but it could be part of our real solution to climate change.
Backed by £3 million from the UK Government, SeaCURE is one of 15 projects exploring carbon removal tech. Unlike air capture, this one taps into the ocean's natural ability to soak up CO2—and could eventually help cut global emissions in a big way.
>> In Other News: US Energy Expands Carbon Capture Assets With New Acquisition
Turns out, seawater has higher CO2 concentrations than air. The SeaCURE team is leaning into that. Their pilot plant, located in Weymouth, tests how well ocean water can be processed to extract carbon at scale.
Some early concerns popped up around marine life, since dissolved carbon is essential for many ocean species. But the team is working on mitigation, like pre-dilution and alkalinity balancing, to reduce risks.
The ocean is already doing a lot of the heavy lifting. Each year, it absorbs billions of tons of CO2 from the atmosphere. SeaCURE just wants to help it do more—without harming what lives in it.
The process is surprisingly low-tech in theory, though the science is solid. Here's how it goes:
Water from the ocean surface is piped to a processing facility. This happens near the coast, minimizing energy use.
By adjusting the water's pH, naturally dissolved carbon is released in the form of gas—just like bubbles in soda.
That gas is pulled out and passed through charred coconut husks, a natural filter that concentrates it into a usable CO2 stream.
The treated seawater gets an alkali boost to restore its balance before heading back out to sea. There, it absorbs even more CO2 naturally.
It’s a closed loop. And it's powered by floating solar panels, making the whole process even cleaner.
Right now, SeaCURE removes about 100 metric tons of CO2 per year—about the same as 100 transatlantic flights. That’s tiny. But the team sees serious scale in their future.
Their pitch to the UK government? If they could treat just 1% of the ocean's surface water, they might remove up to 14 billion tons of CO2 annually. That’s a number that could actually change the game.
That scale would make SeaCURE one of the most promising carbon removal pathways available, especially for hard-to-decarbonize industries like shipping and steel.
Dr. Jennifer Johnson, a marine biogeochemist at the University of Southampton, said in a 2024 climate forum: "Ocean-based carbon removal has the potential to buy us time while we transition to cleaner technologies. The key is making sure it's done safely and responsibly."
SeaCURE’s team seems to agree. They’re careful not to overstate results while remaining hopeful. Their focus is on proving the science works—and that scaling up won't hurt the planet more than it helps.
As they test and tweak, they’re also building public trust. No one wants to see a repeat of failed geoengineering experiments. That’s why SeaCURE's approach feels different: it’s slower, more transparent, and based on the ocean’s own rhythm.
Globally, ocean-based carbon removal is gaining traction. The Carbon to Sea Initiative and similar programs are exploring the same idea. They’re looking at how ocean alkalinity enhancement and electrochemical methods might help reduce CO2 on a larger scale.
There’s competition, of course, from more headline-friendly technologies like direct air capture plants. But for many scientists, the sea still holds the most promise.
David King, former UK Government Chief Scientific Adviser, once said: "The oceans are the lungs of our planet. Any solution that works with them rather than against them is worth exploring."
SeaCURE might not be flashy. But it’s a quiet contender in the carbon removal race—using simple chemistry, floating solar power, and the sea’s natural rhythm to chip away at a massive problem.
The goal isn’t just removal. It’s safe, scalable, and sustainable removal.
And if they can prove that even a fraction of the ocean can help us breathe easier? Then this little pilot in Weymouth might be one of the biggest climate moves we’ve seen yet.
To learn more about SeaCURE, visit seacure.org.uk.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue ✈️ SAF Isn’t a Buzzword Anymore - It’s 2025’s Breakout Fuel 🏅 Global Energy Prize Awarded to Three Scientists From China, USA and Russia ⚡ ACES Delta I Hydrogen Production and St...
Inside This Issue 🛢️ Exxon's Gas Strike, EPA Smackdown, and Carbon Curveball 🏭 MHI Awarded Contract for Basic Design of Japan's Largest CO₂ Capture Plant at Hokkaido Electric Power's Tomato-Atsuma...
Inside This Issue 🌊 The Quiet Rise of Offshore CO2 Storage: North America's Emerging Frontier for Carbon Capture 🍁 Canada Invests in Carbon Capture and Storage in Alberta 🛰️ Vortex Energy Finalize...
Spiritus Technologies PBC Plans Santa Fe, New Mexico, Operations
Spiritus Technologies PBC, a company engaged in sustainable carbon removal, plans to establish operations in Sante Fe, New Mexico. The project is expected to create 40 jobs. The company will lease...
ACES Delta I Hydrogen Production and Storage
World’s largest green hydrogen storage facility being developed in Utah with funding from the U.S. Department of Energy (DOE) Loan Programs Office will help scale low-carbon energy for western stat...
Partnership Signals Breakthrough Collaboration in Carbon Removal and Sustainable Fuel Development for $1 Billion Clean Fuels Facility Monroe Sequestration Partners (MSP), a premier carbon storage ...
National Carbon Capture Center Launches Novel UNOGAS MK3 Solvent Testing
A significant step forward in carbon capture is underway at the National Carbon Capture Center, where KC8 Capture Technologies' (KC8) advanced UNOGAS system – featuring the innovative UNO MK3 solve...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.