Published by Todd Bush on September 10, 2024
Pioneering technology from Texas A&M paves the way for carbon conversion solutions through a new Engineering Research Center
Researchers from Texas A&M University are leading an innovative initiative aimed at transforming U.S. manufacturing to achieve zero or negative emissions. This $26 million decarbonization project, led by Washington University in St. Louis, focuses on creating a circular carbon economy by converting CO2 emissions into valuable products.
>> In Other News: Brookfield to Invest Up to $1.1 Billion in Infinium to Scale Ultra-Low Carbon eFuels USA - English USA
As a co-lead, Texas A&M collaborates with the University of Delaware, Prairie View A&M University, and Washington University. Drawing on expertise from its College of Engineering and Energy Institute, Texas A&M is contributing to cutting-edge carbon capture and conversion technologies.
"Transforming CO2 from waste into useful products in a sustainable way is one of the most critical challenges in the energy transition era," said Dr. Stratos Pistikopoulos, director of the Texas A&M Energy Institute. CURB technology aims to provide scalable engineering solutions for this circular economy.
The breakthrough technology, developed by Dr. Susie Dai, combines CO2 reduction with biological conversion, enabling the central theme of the circular carbon bioeconomy. "We have designed a system that adds value to CO2, creating the blueprint for 'decarbonized biomanufacturing,'" Dai said.
Texas A&M has filed a patent for this innovative process, which has the potential to reshape industries by turning CO2 into high-value materials. Texas A&M's digital twin tools will simulate the feasibility and sustainability of various carbon bioeconomy pathways.
The CURB initiative will also focus on workforce development, helping U.S. workers transition to sustainable manufacturing roles. Texas A&M aims to create new career pathways in biomanufacturing to drive economic growth.
Funding for this project is administered by the Texas A&M Engineering Experiment Station (TEES).
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside this Issue ✈️ CORSIA Transforms Aviation Compliance Into Market Gold Rush 📉 IEA Cuts 2030 Low-emissions Hydrogen Production Outlook by Nearly a Quarter 🎤 GenH2 Executive Chairman Josh McMor...
Inside This Issue 🌍 Global Hydrogen Industry Surpasses USD 110 Billion In Committed Investment As 500+ Projects Worldwide Reach Maturity ♻️ Cielo Advances Waste-to-Fuel Innovation with Project Nex...
Inside This Issue 🏭 CF Industries Flips Switch on Massive CCS Hub That Changes Everything 🧴 Scientists Transform Plastic Waste Into Efficient CO2 Capture Materials ⚡ SHS Group and Verso Energy Sig...
Live Session will Explore Liquid Hydrogen Infrastructure for Aviation TITUSVILLE, FL, UNITED STATES, September 12, 2025 /-- GenH2 Corp., a Path2 Hydrogen Company, a leader in liquid hydrogen infra...
Achieved target ethanol purity of over 99.5vol% at a pilot plant in the Nagasaki District Research & Innovation Center Reduced energy consumption significantly and achieved compact equipme...
Hanwha Power Systems has received Approval in Principle (AiP) from the American Bureau of Shipping (ABS) for the ammonia fuel gas turbine conversion design aimed at 174K LNG carriers at Gastech 202...
Alléo Energy Unveils Carbon-Negative Green Hydrogen System
Alléo cellulosic waste to hydrogen conversion facility BAY MINETTE, Ala.-- Alléo Energy, a pioneer in sustainable energy solutions, today announced a cellulose-to-hydrogen process yielding over on...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.