Published by Todd Bush on November 12, 2024
A project led by the Biorenewables Development Centre at the University of York has become the first to successfully produce hydrogen at scale through a biological process, while also capturing the carbon dioxide released to reduce atmospheric pollution.
The H2Boost project was achieved by transforming everyday waste into clean hydrogen. Hydrogen is considered a cleaner and safer alternative to oil and gas for heating and certain types of transport, but traditional hydrogen production can release carbon dioxide, leading to environmental concerns.
In a landmark achievement for the UK’s green energy sector, researchers are now looking to expand the potential of this new technology to support the UK's net zero ambitions. To produce ‘clean hydrogen,’ experts have been investigating how to meet gas demand while also capturing carbon dioxide.
>> In Other News: Industry Leaders Call for Decisive Action on Clean Hydrogen at COP29
The H2Boost project, in partnership with the University of Leeds and funded by the government’s £1 billion Net Zero Innovation Portfolio (NZIP), was achieved by transforming everyday waste into clean hydrogen through a unique process called dark fermentation, which converts pre-treated organic waste into biohydrogen.
The system captures and reuses all by-products, allowing waste material to generate additional energy through anaerobic digestion. Cultivated algae and bacteria are used to capture carbon emissions, ensuring that virtually nothing goes to waste in the production of hydrogen.
Penny Cunningham, Programme Operations Manager at the Biorenewables Development Centre, said: "Successfully demonstrating integrated hydrogen production with carbon capture represents a significant technical breakthrough for the H2Boost project.
“Our novel approach to producing clean hydrogen from waste while removing CO2 is not only technically feasible but also holds significant promise for large-scale sustainable energy solutions in the future."
The H2Boost project, an initiative under the Department for Energy Security and Net Zero's Hydrogen BECCS Innovation Programme, aims to develop a commercially viable and sustainable process for producing biohydrogen from organic waste.
Experts and industry leaders believe that new technologies like these could play a crucial role in decarbonising the UK's transport sector, with low-carbon hydrogen technologies expected to supply up to 35% of the UK's energy needs by 2050.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 💸 Trump Administration Cancels $3.7 Billion in Clean Energy Projects, Ending Ambitious Industrial Decarbonization Efforts 🌊 A New Protocol for Carbon Removal via Direct Ocean Cap...
Inside This Issue ⚡ Energy Department Removes Barriers for American Energy Producers, Unleashing Investment in Domestic Hydrogen 🛳️ MASH Makes Powers First Vessel Trial With Biofuel From a Carbon-...
Inside This Issue 🛢️ Conestoga Energy Completes Drilling of Class VI Carbon Capture & Sequestration Well, Advances Toward EPA Application 🏗️ How Microsoft and Sublime Systems Are Reinventing C...
(Sustainable Aviation Buyers Alliance) SABA's third RFP seeks to leverage corporate demand to help move a next-generation SAF facility to final investment decision. Today (May 6, 2025), the Sustai...
Hartland Landfill Producing Renewable Natural Gas for FortisBC
VICTORIA, B.C.—The Capital Regional District (CRD), working together with FortisBC Energy Inc. (FortisBC) and Waga Energy Canada, has started producing Renewable Natural Gas (RNG) at a new facility...
A New Protocol for Carbon Removal via Direct Ocean Capture & Storage
Isometric has released a draft protocol for carbon dioxide removal (CDR) via Direct Ocean Capture & Storage (DOCS) for public consultation. The protocol outlines requirements and procedures for...
The U.S. Department of Energy’s (DOE) Hydrogen and Fuel Cell Technologies Office today removed barriers for the American hydrogen industry by updating its 45VH2-GREET modeling tool. The latest vers...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.