Published by Todd Bush on January 9, 2025
The recently published research utilized a novel method involving tea leaves to study carbon sequestration in wetland ecosystems across 28 countries.
A University of New England professor of environmental studies is among a global team of scientists who have co-authored a groundbreaking study examining how climate change influences the ability of wetlands to store carbon.
>> In Other News: Unlocking BECCS Potential: How Non-Net-Zero Countries Can Drive Climate Progress
UNE’s Pam Morgan, Ph.D., is part of an international team of 110 scientists involved in the research, led by Stacey M. Trevathan-Tackett, Ph.D., a faculty member at RMIT University in Melbourne, Australia, as part of an Australian Research Council fellowship while at Deakin University in Australia.
The study, recently published in “Environmental Science and Technology,” utilized a novel method involving tea leaves to study carbon sequestration in wetland ecosystems across 28 countries.
The researchers deployed over 19,000 tea bags, both green and rooibos, to analyze carbon decomposition rates in 180 wetlands worldwide. It was the first usage of tea bags – a proven proxy method to measure carbon release from soil into the atmosphere – in a large-scale, long-term study, the researchers said.
By burying bags and measuring their organic mass after varying periods, researchers gained insights into how climate, habitat, and soil type interact to influence carbon storage capacity.
The findings reveal that warmer temperatures generally accelerate the decay of organic matter, leading to a reduced ability of wetlands to act as carbon sinks. However, the effects varied by wetland type, with freshwater and tidal marshes showing greater potential for carbon storage compared to other ecosystems.
“Changes in carbon sinks can significantly influence global warming – the less carbon decomposed means more carbon stored and less carbon in the atmosphere,” said Trevathan-Tackett. “This data shows us how we can maximize carbon storage in wetlands globally.”
For her portion of the study, Morgan engaged undergraduate student researchers in UNE’s 363-Acre Forest – a natural, living laboratory located just steps from the university’s oceanfront campus in Biddeford – and in the adjacent salt marshes.
“Seeing how these wetland sites fit into this big, global project was a great experience for the undergraduate student researchers who participated over the three years of the study,” said Morgan, a faculty member in the School of Marine and Environmental Programs.
Results from this work not only enhance understanding of carbon storage mechanisms in wetlands but also contribute to predictive models that can inform conservation strategies worldwide, the authors said.
“This study provides important information that can be used to help keep the huge amount of carbon stored in the world’s wetlands in the ground,” said Morgan. “This is an essential piece of the puzzle if we want to avoid the worst impacts of climate change.”
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🔧 Utilities Seek to Bypass Low-Level Hydrogen Blending Demo, Citing Proven Safety 🌍 EU Sets World’s First Voluntary Standard for Permanent Carbon Removals ✈️ Cathay Achieves Anot...
Inside This Issue 🛫 New US Powerhouse: XCF Global, DevvStream & Southern Merge for SAF Scale ⛏️ Carbon Capture, ‘Rare Earth’ From Coal Among Projects Poised to Get $11.7M in State Grants 🗺️ Ca...
Inside This Issue 🧪 Why Bill Gates Bet $40M on This Carbon Capture Lab ⛏️ Max Power Prepares to Drill Second Natural Hydrogen Well as Program Expands 325 km SW of Lawson Discovery 💰 Trafigura-Back...
Terradot Acquires Eion to Form Leading Global Enhanced Rock Weathering Carbon Removal Platform
Terradot, an enhanced rock weathering (ERW) carbon removal company, today announced it has agreed to acquire assets of Eion, a U.S.-based ERW company known for pioneering olivine-based deployments ...
Clean Fuels Welcomes Proposed 45Z Rules
WASHINGTON, DC – Today, Clean Fuels Alliance America welcomed Treasury’s proposed rules for the 45Z Clean Fuel Production Credit, issued through the IRS. While the credit has been available since J...
pHathom Technologies Surpasses $12M Committed Capital with Closure of Seed Financing Round
HALIFAX, Nova Scotia -- pHathom Technologies, a climate technology company developing carbon capture solutions for existing coastal bioenergy and industrial facilities, today announced the closing ...
Growing Demand for Hydrogen Creates Opportunities for Appalachian Manufacturers
With abundant natural gas and a ready manufacturing base, Appalachia is positioned to be a leader in blue hydrogen production The hydrogen economy has transitioned to an emerging market. Appalachi...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.