Published by Todd Bush on February 11, 2025
CarbonCure Technologies and MIT's Masic Lab have joined forces to push the boundaries of carbon dioxide (CO₂) injection and mineralization in concrete. This collaboration is set to deepen the industry’s understanding of how CO2 can be permanently embedded in concrete, helping to reduce the carbon footprint of one of the most emissions-intensive industries in the world.
>> In Other News: New Study Ranks the Most Efficient Carbon Removal Methods
Professor Admir Masic, from MIT’s Civil and Environmental Engineering department, is leading this initiative. His Masic Lab focuses on nanochemomechanics, a field that examines mineralization processes in construction materials, archaeological artifacts, and biological specimens.
The lab is part of MIT’s Concrete Sustainability Hub (CSHub), a research platform uniting industry, government, and academic leaders to drive sustainable infrastructure solutions.
This collaboration builds on CarbonCure’s decade-long research into CO2 utilization and mineralization in concrete. With extensive experience in this field, CarbonCure has developed innovative solutions that allow CO2 to be injected into fresh concrete, where it reacts with calcium ions to form stable calcium carbonate minerals.
The partnership aims to explore CO2 mineralization in concrete at multiple levels, from nanoscale analysis to industrial-scale production. By leveraging advanced in-situ and operando Raman spectroscopy and microscopy, the team will study the precise mechanisms driving mineralization.
Some key research areas include:
Concrete production is responsible for nearly 8% of global CO2 emissions. Technologies that embed CO2 into concrete could play a major role in decarbonizing the industry while maintaining or even improving material performance.
According to CarbonCure Chief Technology Officer Dean Forgeron, “CarbonCure aims to strengthen the industry’s scientific understanding of the intersection between mineralization and concrete properties, with a constant focus on enhancing the performance benefits of our technologies and innovating on behalf of our concrete producer partners.”
This research could help concrete producers optimize CO2 mineralization techniques, leading to stronger, more durable materials while reducing carbon emissions.
As governments and industries worldwide look for scalable, cost-effective carbon reduction solutions, the potential of CO2 mineralization in concrete is gaining traction.
By combining CarbonCure’s technological expertise with MIT’s advanced analytical capabilities, this research could pave the way for widespread adoption of lower-carbon concrete in construction projects.
This initiative is another step toward making carbon-neutral concrete a reality. With increased investment in CO2 capture and utilization, partnerships like this could redefine the future of sustainable building materials.
For more on this topic, check out CarbonCure Technologies and MIT's Concrete Sustainability Hub.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🧬 Occidental's Bold Bet on Carbon Removal: What the Holocene Acquisition Really Means 🌊 Project to Suck Carbon Out of Sea Begins in UK 🧱 NovoMOF Raises $5.4 Million to Scale Up L...
Inside This Issue 🧪 CF Industries Announces Joint Venture with JERA Co., Inc., and Mitsui & Co., Inc., for Production and Offtake of Low-Carbon Ammonia 🪨 Microsoft Signs Large Carbon Removal D...
Inside This Issue 🚢 US Against Plan for Levy on Carbon Emissions From Ships, Leak Suggests 🌱 Envitec Biogas Commissions Its Largest Anaerobic Digestion Plant in the US 🖥️ First-of-Its-Kind AI-powe...
NovoMOF Raises $5.4 Million to Scale Up Low-Cost Carbon Capture Materials
novoMOF said it has raised CHF 4.4 million (USD $5.4 million) to further advance its sustainable materials for low-cost carbon capture in high-emissions industrial sectors. Founded in 2017 as a sp...
THE WOODLANDS, Texas, April 15, 2025 /PRNewswire/ -- CB&I and a consortium including Shell International Exploration and Production, Inc. (Shell), a subsidiary of Shell plc, GenH2 and the Unive...
Hydrogen Capture Enhances Sustainability and Profitability of Olin's St. Gabriel Facility Plug US Hydrogen Capacity now at 40 metric-ton-per-day (TPD) CLAYTON, Mo., April 17, 2025 /PRNewswir...
Indigo Approaches a Megaton of Carbon Removals Stored in US Cropland
Indigo's MRV approach recognized as industry best practice 85% decrease in administrative burden removes meaningful obstacle to scale-up Over 1M carbon removals and reductions achieved cumul...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.