A new research project led by scientists at The University of Manchester in collaboration with Equinor ASA will unlock crucial insights into how microbes in deep underground storage sites could impact the success of carbon capture and storage (CCS).
As the UK strives to reach Net Zero emissions by 2050, secure and permanent geological storage of CO₂ is essential to avoid the worst-case consequences of climate change.
Storage in deep geological formations such as depleted oil and gas reservoirs and saline aquifers offers a promising solution. However, these underground environments host diverse microbial ecosystems, and their response to CO₂ injection remains poorly understood.
>> In Other News: Rubicon Carbon Enters into Agreement with Microsoft for Nature-based Carbon Removal Credits
This knowledge gap poses a potential risk to long-term CO₂ storage integrity. While some microbial responses may be beneficial and enhance mineralogical or biological CO₂ sequestration, others could be unfavourable, leading to methane production, corrosion of infrastructure, or loss of injectivity.
The new flagship project with The University of Manchester and Equinor — global leaders in geological CO₂ storage — will investigate how subsurface microbial communities respond to CO₂ injection and storage, highlighting both the potential risks and opportunities posed by these microbes.
Prof Sophie Nixon, BBSRC David Phillips and Dame Kathleen Ollerenshaw Fellow at The University of Manchester, said: "Over the past 20 years, scientists have tested storing CO₂ underground in real-world conditions, but we still know little about how this affects native and introduced microbes living deep below the surface.
Previous studies have shown that injecting CO₂ underground actively changes microbial communities. In some cases, microbes initially decline but later recover, potentially influencing the fate of injected CO₂ in geological storage scenarios. However, these studies predate the advent of large-scale metagenomic sequencing approaches. A deep understanding of who is there, what they can do and how they respond to CO₂ storage is crucial for ensuring the long-term success of carbon capture and storage."
The two-year project will collect samples from saline aquifer and oil producing sites to study how microbes living deep underground respond to high concentrations of CO₂ by combining geochemistry, gas isotope analysis, metagenomic and bioinformatic approaches.
Dr Rebecca Tyne, Dame Kathleen Ollerenshaw Fellow at The University of Manchester, said: "To date, Carbon Capture and Storage research has focused on the physiochemical behaviour of CO₂, yet there has been little consideration of the subsurface microbial impact on CO₂ storage. However, the impact of microbial processes can be significant. For instance, my research has shown that methanogenesis may modify the fluid composition and the fluid dynamics within the storage reservoir."
Currently, the North Sea Transition Authority requires all carbon capture and storage sites to have a comprehensive Measurement, Monitoring and Verification strategy, but microbial monitoring is not yet included in these frameworks. The project’s findings will be shared with industry stakeholders and published in leading scientific journals, helping to close this critical gap and shape future operational activities.
Leanne Walker, Research Associate in Subsurface Microbiology at The University of Manchester, said: "This project will help us understand the underground microbial communities affected by CO₂ storage—how they respond, the potential risks and benefits, and the indicators that reveal these changes.
Our findings will provide vital insights for assessing microbiological risks at both planned and active CCS sites, ensuring safer and more effective long-term CO₂ storage."
The University of Manchester is a public research university in Manchester, England. It is part of the prestigious Russell Group of universities and has a strong focus on interdisciplinary research and global sustainability initiatives. Learn more at www.manchester.ac.uk.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Wishing everyone a restful holiday season.🎄🎅🎁 Inside this Issue ✈️ Cathay Goes Global With SAF in Three-Continent Fuel Deal 🧪 Proton Ventures Partners With Barents Blue For Realization Of The Bar...
Inside This Issue 🚛 Alberta's Shared Truck Model Could Crack Hydrogen Adoption ✈️ ZeroAvia Completes Financing Round 🌾 Frontier And NULIFE Scale New Biowaste Carbon Removal Approach 🔥 WAGABOX® Of ...
Inside This Issue 🌎 North America's Carbon Removal Year in Review: The Deals, Policies, and Milestones That Shaped 2025 🚢 Hapag-Lloyd And North Sea Container Line Win ZEMBA Second E-Fuel Tender 🪨 ...
Vallourec, a world leader in premium seamless tubular solutions, and Geostock, a global specialist in underground storage of energy, have signed a Memorandum of Understanding (MoU) to strengthen th...
CMA CGM, DHL Step Up Ocean Freight Decarbonization with Biofuel Deal
DHL Global Forwarding and shipping group CMA CGM have agreed to jointly use 8,990 metric tons of second-generation biofuel to reduce emissions from ocean freight. The initiative is expected to cut...
Next-Generation Gas Turbine Control System For Thermal Power Plants Completes Functional Testing
Integration of Mitsubishi Power's control technology with Mitsubishi Electric's high-speed data processing technology Supports rapid load adjustments and diverse fuels including hydrogen Tokyo, ...
Proton Ventures Partners With Barents Blue For Realization Of The Barents Clean Ammonia Project
Barents Blue AS today announces Proton Ventures as new partner to the Barents Clean Ammonia Project (formerly known as the Barents Blue project). The Dutch engineering and project development compa...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.