A new research project led by scientists at The University of Manchester in collaboration with Equinor ASA will unlock crucial insights into how microbes in deep underground storage sites could impact the success of carbon capture and storage (CCS).
As the UK strives to reach Net Zero emissions by 2050, secure and permanent geological storage of CO₂ is essential to avoid the worst-case consequences of climate change.
Storage in deep geological formations such as depleted oil and gas reservoirs and saline aquifers offers a promising solution. However, these underground environments host diverse microbial ecosystems, and their response to CO₂ injection remains poorly understood.
>> In Other News: Rubicon Carbon Enters into Agreement with Microsoft for Nature-based Carbon Removal Credits
This knowledge gap poses a potential risk to long-term CO₂ storage integrity. While some microbial responses may be beneficial and enhance mineralogical or biological CO₂ sequestration, others could be unfavourable, leading to methane production, corrosion of infrastructure, or loss of injectivity.
The new flagship project with The University of Manchester and Equinor — global leaders in geological CO₂ storage — will investigate how subsurface microbial communities respond to CO₂ injection and storage, highlighting both the potential risks and opportunities posed by these microbes.
Prof Sophie Nixon, BBSRC David Phillips and Dame Kathleen Ollerenshaw Fellow at The University of Manchester, said: "Over the past 20 years, scientists have tested storing CO₂ underground in real-world conditions, but we still know little about how this affects native and introduced microbes living deep below the surface.
Previous studies have shown that injecting CO₂ underground actively changes microbial communities. In some cases, microbes initially decline but later recover, potentially influencing the fate of injected CO₂ in geological storage scenarios. However, these studies predate the advent of large-scale metagenomic sequencing approaches. A deep understanding of who is there, what they can do and how they respond to CO₂ storage is crucial for ensuring the long-term success of carbon capture and storage."
The two-year project will collect samples from saline aquifer and oil producing sites to study how microbes living deep underground respond to high concentrations of CO₂ by combining geochemistry, gas isotope analysis, metagenomic and bioinformatic approaches.
Dr Rebecca Tyne, Dame Kathleen Ollerenshaw Fellow at The University of Manchester, said: "To date, Carbon Capture and Storage research has focused on the physiochemical behaviour of CO₂, yet there has been little consideration of the subsurface microbial impact on CO₂ storage. However, the impact of microbial processes can be significant. For instance, my research has shown that methanogenesis may modify the fluid composition and the fluid dynamics within the storage reservoir."
Currently, the North Sea Transition Authority requires all carbon capture and storage sites to have a comprehensive Measurement, Monitoring and Verification strategy, but microbial monitoring is not yet included in these frameworks. The project’s findings will be shared with industry stakeholders and published in leading scientific journals, helping to close this critical gap and shape future operational activities.
Leanne Walker, Research Associate in Subsurface Microbiology at The University of Manchester, said: "This project will help us understand the underground microbial communities affected by CO₂ storage—how they respond, the potential risks and benefits, and the indicators that reveal these changes.
Our findings will provide vital insights for assessing microbiological risks at both planned and active CCS sites, ensuring safer and more effective long-term CO₂ storage."
The University of Manchester is a public research university in Manchester, England. It is part of the prestigious Russell Group of universities and has a strong focus on interdisciplinary research and global sustainability initiatives. Learn more at www.manchester.ac.uk.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🌬️ Occidental and ADNOC’s XRG Agree to Evaluate Joint Venture to Develop South Texas Direct Air Capture Hub 🧪 Carbon Cell Raises £1.2M to Scale Production of Innovative Low-carbo...
Inside This Issue 🏭 Svante Launches World's First Commercial Gigafactory for Carbon Capture & Removal Filters ✈️ Alder Renewables and Bioénergie AECN Announce Project Avance: Unlocking Sustain...
Inside This Issue ✈️ United Bets on Photosynthesis and Limestone to Fuel Net-Zero Flight Path 📈 EIA: US SAF Production Takes Off as New Capacity Comes Online 🌲 Alder, Bioénergie AECN Unlock SAF Pr...
Rubicon Carbon Enters into Agreement with Microsoft for Nature-based Carbon Removal Credits
This initiative marks one of the largest-ever commitments by a single corporate buyer in the voluntary carbon market to date. Rubicon Carbon, a leading carbon credit management firm, today entered...
Carbon Cell Raises £1.2M to Scale Production of Innovative Low-carbon Foam Material
Carbon Cell has raised a £1.2m pre-seed round to scale its novel, plastic-free foam made from biochar and natural polymers Founded by Imperial alumni Elizabeth Lee, Ori Blich, Eden Harrison and Ju...
XRG to consider investing up to $500 million for the development of 1PointFive’s 500,000 tonne-capacity DAC facility HOUSTON, May 16, 2025 (GLOBE NEWSWIRE) Occidental (NYSE: OXY) and its subsidia...
Project Avance will deploy Alder Renewables' proprietary technology to convert bio-oil currently produced at the Port-Cartier Bioénergie AECN plant which is a joint venture between sawmill operator...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.