A new research project led by scientists at The University of Manchester in collaboration with Equinor ASA will unlock crucial insights into how microbes in deep underground storage sites could impact the success of carbon capture and storage (CCS).
As the UK strives to reach Net Zero emissions by 2050, secure and permanent geological storage of CO₂ is essential to avoid the worst-case consequences of climate change.
Storage in deep geological formations such as depleted oil and gas reservoirs and saline aquifers offers a promising solution. However, these underground environments host diverse microbial ecosystems, and their response to CO₂ injection remains poorly understood.
>> In Other News: Rubicon Carbon Enters into Agreement with Microsoft for Nature-based Carbon Removal Credits
This knowledge gap poses a potential risk to long-term CO₂ storage integrity. While some microbial responses may be beneficial and enhance mineralogical or biological CO₂ sequestration, others could be unfavourable, leading to methane production, corrosion of infrastructure, or loss of injectivity.
The new flagship project with The University of Manchester and Equinor — global leaders in geological CO₂ storage — will investigate how subsurface microbial communities respond to CO₂ injection and storage, highlighting both the potential risks and opportunities posed by these microbes.
Prof Sophie Nixon, BBSRC David Phillips and Dame Kathleen Ollerenshaw Fellow at The University of Manchester, said: "Over the past 20 years, scientists have tested storing CO₂ underground in real-world conditions, but we still know little about how this affects native and introduced microbes living deep below the surface.
Previous studies have shown that injecting CO₂ underground actively changes microbial communities. In some cases, microbes initially decline but later recover, potentially influencing the fate of injected CO₂ in geological storage scenarios. However, these studies predate the advent of large-scale metagenomic sequencing approaches. A deep understanding of who is there, what they can do and how they respond to CO₂ storage is crucial for ensuring the long-term success of carbon capture and storage."
The two-year project will collect samples from saline aquifer and oil producing sites to study how microbes living deep underground respond to high concentrations of CO₂ by combining geochemistry, gas isotope analysis, metagenomic and bioinformatic approaches.
Dr Rebecca Tyne, Dame Kathleen Ollerenshaw Fellow at The University of Manchester, said: "To date, Carbon Capture and Storage research has focused on the physiochemical behaviour of CO₂, yet there has been little consideration of the subsurface microbial impact on CO₂ storage. However, the impact of microbial processes can be significant. For instance, my research has shown that methanogenesis may modify the fluid composition and the fluid dynamics within the storage reservoir."
Currently, the North Sea Transition Authority requires all carbon capture and storage sites to have a comprehensive Measurement, Monitoring and Verification strategy, but microbial monitoring is not yet included in these frameworks. The project’s findings will be shared with industry stakeholders and published in leading scientific journals, helping to close this critical gap and shape future operational activities.
Leanne Walker, Research Associate in Subsurface Microbiology at The University of Manchester, said: "This project will help us understand the underground microbial communities affected by CO₂ storage—how they respond, the potential risks and benefits, and the indicators that reveal these changes.
Our findings will provide vital insights for assessing microbiological risks at both planned and active CCS sites, ensuring safer and more effective long-term CO₂ storage."
The University of Manchester is a public research university in Manchester, England. It is part of the prestigious Russell Group of universities and has a strong focus on interdisciplinary research and global sustainability initiatives. Learn more at www.manchester.ac.uk.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🧠 From Mars to AI: Fuel Cells Power $28B Boom 🏆 Svante Technologies Wins Global Award for Breakthrough Carbon Capture Innovation 🚧 California Resources Corporation Breaks Ground ...
Inside This Issue 💰 Where the $6.5 Trillion Goes: Carbon Tech Fights for Funding 🔋 Douglas PUD Commission Cuts Ribbon At Renewable Hydrogen Production Facility 🍁 Quinbrook Acquires First Canadian ...
Inside This Issue 🌎 Are U.S. Setbacks Fueling a Global Push for Decarbonization? 🛢️ “Grand Bargain” Would Result In More Oils ands Emissions, Not Less 🤝 MOU Signed With JGC Group 🧪 IonQ Quantum Co...
Sustainable Jet Fuel Developer Moves Priority From SD to ND Amid Summit Pipeline Delays
Gevo Inc. Plans Sustainable Aviation Fuel Shift From South Dakota To North Dakota Amid Summit Carbon Pipeline Delays Gevo Inc., a Colorado-based developer of sustainable aviation fuel (SAF), annou...
CapturePoint’s CENLA Hub Project Advances On Louisiana’s Short List For Carbon Storage Permitting
CapturePoint Solutions LLC’s CENLA Hub Project Advances On Louisiana Department of Conservation and Energy (C&E) Short List For Carbon Storage Permitting ALLEN, Texas, Oct. 15, 2025 (GLOBE NEW...
Pacific Harbor Line Expands Sustainability Efforts With Remora Partnership
Anacostia Rail Holdings (ARH) is pleased to announce that its Pacific Harbor Line (PHL) subsidiary has entered into a development agreement with Remora, a Michigan-based climate technology startup ...
CATACARB® Wins Carbon Remover Award At Carbon Capture Canada 2025
CATACARB is proud to announce it has been awarded the Carbon Remover Award at Carbon Capture Canada (Canada's National Carbon Capture and Storage Event) held in Edmonton. The Carbon Remover Award r...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.