Published by Todd Bush on January 23, 2024
The company reports progress in the development of its novel low-cost thermochemical process to split water to produce the world’s cheapest green hydrogen
SANTA CLARITA, Calif., Jan. 23, 2024 (GLOBE NEWSWIRE) -- NewHydrogen, Inc. (OTCMKTS:NEWH), the developer of ThermoLoop™, a breakthrough technology that uses water and heat rather than electricity to produce the world’s cheapest green hydrogen, today provided a progress update about its ThermoLoopTM technology currently being developed with the University of California Santa Barbara (UCSB).
>> In Other News: NewHydrogen CEO Steve Hill Discusses the Use of Hydrogen in the Space and Aviation Industries With Georgia Tech Expert
The most common method of making green hydrogen today is to split water into oxygen and hydrogen with an electrolyzer using green electricity produced from solar or wind. However, green electricity is, and always will be very expensive. It currently accounts for 73% of the cost of green hydrogen.
Steve Hill, the Company’s CEO, said, “Cheap, widely available green hydrogen could revolutionize global energy systems and presents a $12 trillion market opportunity. At NewHydrogen, we aim to play a leading role in capturing a share of this enormous potential market by developing a whole new way to reduce the cost of green hydrogen.”
“Working with a world class research team at UCSB, we are developing ThermoLoopTM, a novel low-cost thermochemical process to split water using inexpensive heat, instead of expensive electricity,” said Mr. Hill. “Previous thermochemical approaches use extremely hard to manage temperatures such as 2,000°C, or an inefficient series of step reactions at different temperatures to split water into oxygen and hydrogen. Using heat to split water isn’t new, but our goal with ThermoLoopTM is to develop an elegant and highly efficient chemical looping redox process operating at normal industrial temperatures ranges (below 1000°C).”
Mr. Hill continued, “One step oxidizes (changes) the material to facilitate hydrogen production, the other step(s) reduce (recover) the material and produce oxygen. These steps operate in a continuous process loop that splits an incoming supply of steam (water). This type of redox chemistry is simple on paper but hard in practice. We believe the magic lies in the redox properties of certain multiphase materials we are developing. To our knowledge, this has not been done before and represents an exciting development that may enable substantial cost reduction by skipping expensive electricity. Inexpensive heat can be obtained from concentrated solar, geothermal, nuclear reactors or industrial waste heat.”
Since the commencement of the Company’s research project in August 2023, the UCSB team has been pursuing novel approaches for designing new material systems and process designs for thermochemical water splitting. The team has designed and built a reactor system test stand and has generated hydrogen from water using a thermochemical reaction cycle. This test bed reactor allows the team to characterize the performance of synthesized candidate materials under varying process conditions.
The UCSB team is making use of a thermodynamic screening methodology to identify candidate materials. The initial synthesized candidates undergo focused study including identifying the mechanisms of hydrogen and oxygen generation and the changes in candidate material structures and compositions. Thermogravimetric analysis is used to quantify the materials’ reduction and oxidation capabilities. X-ray diffraction analysis provides further understanding of the material changes during reduction and oxidation.
Mr. Hill concluded, “We are very pleased with the UCSB team’s progress and their innovative approach of developing a thermodynamic model for exploring solid-state phase change materials and high temperature complex liquids. They are taking methodical steps to select and screen material candidates suitable for low temperature thermochemical water splitting to produce the world’s cheapest green hydrogen.”
For more information about NewHydrogen and its ThermoLoopTM technology, please visit https://newhydrogen.com/.
NewHydrogen is developing ThermoLoop™ – a breakthrough technology that uses water and heat rather than electricity to produce the world’s lowest cost green hydrogen. Hydrogen is the cleanest and most abundant element in the universe, and we can’t live without it. Hydrogen is the key ingredient in making fertilizers needed to grow food for the world. It is also used for transportation, refining oil and making steel, glass, pharmaceuticals and more. Nearly all the hydrogen today is made from hydrocarbons like coal, oil, and natural gas, which are dirty and limited resources. Water, on the other hand, is an infinite and renewable worldwide resource.
Currently, the most common method of making green hydrogen is to split water into oxygen and hydrogen with an electrolyzer using green electricity produced from solar or wind. However, green electricity is and always will be very expensive. It currently accounts for 73% of the cost of green hydrogen. By using heat directly, we can skip the expensive process of making electricity, and fundamentally lower the cost of green hydrogen. Inexpensive heat can be obtained from concentrated solar, geothermal, nuclear reactors and industrial waste heat for use in our novel low-cost thermochemical water splitting process. Working with a world class research team at UC Santa Barbara, our goal is to help usher in the green hydrogen economy that Goldman Sachs estimated to have a future market value of $12 trillion.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 💧 Lummus and Advanced Ionics Establish Partnership for Green Hydrogen 🌫️ Capturing Carbon From the Air Just Got Easier 🏗️ Linde to Provide Carbon Capture Technology for Offshore ...
Inside This Issue 🌊 Microsoft Clinches Ocean-based Carbon Removal Deal With Ebb Carbon 🌱 New $5 Million DOE Award Supports KU Startup’s Green Hydrogen Energy Research ⚙️ Energy Vault EVx™ Gravity ...
Inside This Issue 🛠️ BHP, JSW Steel To Explore Use of Carbon Capture Technology in Steelmaking 🏝️ Exxon Mobil’s Landmark Acquisition for Offshore CO2 Capture: A Big Step Toward Carbon Reduction 🚗 ...
Aviva Launches Carbon Removal Fund
The fund aims to provide investors with access to a range of carbon removal projects, at a time when governments are waking up to the scale of work required to meet the goals of the Paris Agreement...
Lummus and Advanced Ionics Establish Partnership for Green Hydrogen
Partnership will advance production of cost-effective and sustainable green hydrogen technology HOUSTON, Nov. 1, 2024 /PRNewswire/ -- Lummus Technology, a global provider of process technologies a...
Capturing Carbon From the Air Just Got Easier
A new type of porous material called a covalent organic framework quickly sucks up carbon dioxide from ambient air Capturing and storing the carbon dioxide humans produce is key to lowering atmosp...
Linde to Provide Carbon Capture Technology for Offshore ADNOC Project
Linde Engineering has signed an agreement with NEXTCHEM to provide carbon capture technology to Abu Dhabi National Oil Company’s (ADNOC) Hail and Ghasha project. Located in the United Arab Emirates...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.