Published by Todd Bush on January 23, 2024
The company reports progress in the development of its novel low-cost thermochemical process to split water to produce the world’s cheapest green hydrogen
SANTA CLARITA, Calif., Jan. 23, 2024 (GLOBE NEWSWIRE) -- NewHydrogen, Inc. (OTCMKTS:NEWH), the developer of ThermoLoop™, a breakthrough technology that uses water and heat rather than electricity to produce the world’s cheapest green hydrogen, today provided a progress update about its ThermoLoopTM technology currently being developed with the University of California Santa Barbara (UCSB).
>> In Other News: NewHydrogen CEO Steve Hill Discusses the Use of Hydrogen in the Space and Aviation Industries With Georgia Tech Expert
The most common method of making green hydrogen today is to split water into oxygen and hydrogen with an electrolyzer using green electricity produced from solar or wind. However, green electricity is, and always will be very expensive. It currently accounts for 73% of the cost of green hydrogen.
Steve Hill, the Company’s CEO, said, “Cheap, widely available green hydrogen could revolutionize global energy systems and presents a $12 trillion market opportunity. At NewHydrogen, we aim to play a leading role in capturing a share of this enormous potential market by developing a whole new way to reduce the cost of green hydrogen.”
“Working with a world class research team at UCSB, we are developing ThermoLoopTM, a novel low-cost thermochemical process to split water using inexpensive heat, instead of expensive electricity,” said Mr. Hill. “Previous thermochemical approaches use extremely hard to manage temperatures such as 2,000°C, or an inefficient series of step reactions at different temperatures to split water into oxygen and hydrogen. Using heat to split water isn’t new, but our goal with ThermoLoopTM is to develop an elegant and highly efficient chemical looping redox process operating at normal industrial temperatures ranges (below 1000°C).”
Mr. Hill continued, “One step oxidizes (changes) the material to facilitate hydrogen production, the other step(s) reduce (recover) the material and produce oxygen. These steps operate in a continuous process loop that splits an incoming supply of steam (water). This type of redox chemistry is simple on paper but hard in practice. We believe the magic lies in the redox properties of certain multiphase materials we are developing. To our knowledge, this has not been done before and represents an exciting development that may enable substantial cost reduction by skipping expensive electricity. Inexpensive heat can be obtained from concentrated solar, geothermal, nuclear reactors or industrial waste heat.”
Since the commencement of the Company’s research project in August 2023, the UCSB team has been pursuing novel approaches for designing new material systems and process designs for thermochemical water splitting. The team has designed and built a reactor system test stand and has generated hydrogen from water using a thermochemical reaction cycle. This test bed reactor allows the team to characterize the performance of synthesized candidate materials under varying process conditions.
The UCSB team is making use of a thermodynamic screening methodology to identify candidate materials. The initial synthesized candidates undergo focused study including identifying the mechanisms of hydrogen and oxygen generation and the changes in candidate material structures and compositions. Thermogravimetric analysis is used to quantify the materials’ reduction and oxidation capabilities. X-ray diffraction analysis provides further understanding of the material changes during reduction and oxidation.
Mr. Hill concluded, “We are very pleased with the UCSB team’s progress and their innovative approach of developing a thermodynamic model for exploring solid-state phase change materials and high temperature complex liquids. They are taking methodical steps to select and screen material candidates suitable for low temperature thermochemical water splitting to produce the world’s cheapest green hydrogen.”
For more information about NewHydrogen and its ThermoLoopTM technology, please visit https://newhydrogen.com/.
NewHydrogen is developing ThermoLoop™ – a breakthrough technology that uses water and heat rather than electricity to produce the world’s lowest cost green hydrogen. Hydrogen is the cleanest and most abundant element in the universe, and we can’t live without it. Hydrogen is the key ingredient in making fertilizers needed to grow food for the world. It is also used for transportation, refining oil and making steel, glass, pharmaceuticals and more. Nearly all the hydrogen today is made from hydrocarbons like coal, oil, and natural gas, which are dirty and limited resources. Water, on the other hand, is an infinite and renewable worldwide resource.
Currently, the most common method of making green hydrogen is to split water into oxygen and hydrogen with an electrolyzer using green electricity produced from solar or wind. However, green electricity is and always will be very expensive. It currently accounts for 73% of the cost of green hydrogen. By using heat directly, we can skip the expensive process of making electricity, and fundamentally lower the cost of green hydrogen. Inexpensive heat can be obtained from concentrated solar, geothermal, nuclear reactors and industrial waste heat for use in our novel low-cost thermochemical water splitting process. Working with a world class research team at UC Santa Barbara, our goal is to help usher in the green hydrogen economy that Goldman Sachs estimated to have a future market value of $12 trillion.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🌍 Climeworks Launches Mammoth: The World's Largest Direct Air Capture Plant in Iceland 🌱 Capsol And Sumitomo To Capture CO2 From A Swedish Bio-CHP Plant With New Demo ⚡ MAX Power...
Inside This Issue 🤝 New Joint Venture Announced by GLJ and Energy Fuse to Lead U.S. Carbon Sequestration and Enhanced Oil Recovery Projects 🔋 Carbon Capture COF Shows Impressive Ability to Survive...
Inside This Issue 🌪️ Carbon Clean Announces Fully Columnless Carbon Capture, With Launch of CycloneCC C1 Series ⚛️ How US States Can Lead on Carbon Removal Policy 🤝 Lummus and Advanced Ionics Esta...
This pivotal grant will fund the development of validation and best practices – including measurement, reporting, and verification capabilities. LONGMONT, Colo., Nov. 7, 2024 /PRNewswire/ -- The U...
The U.S. Department of Energy’s (DOE) Office of Fossil Energy and Carbon Management (FECM) recently announced $29 million in federal funding for 12 research and development projects. This funding a...
Alto Ingredients, Inc. Enters CO2 Transportation and Sequestration Agreement with Vault 44.01
PEKIN, Ill., Nov. 06, 2024 (GLOBE NEWSWIRE) -- Alto Ingredients, Inc. (NASDAQ: ALTO), a leading producer and distributor of specialty alcohols, renewable fuels and essential ingredients, announced ...
MAX Power Makes Strategic Management Move to Accelerate Natural Hydrogen Opportunities
VANCOUVER, British Columbia, Nov. 07, 2024 (GLOBE NEWSWIRE) -- MAX Power Mining Corp. (CSE: MAXX; OTC: MAXXF; FRANKFURT: 89N) (“MAX Power” or the “Company”) is pleased to announce that Mr. Mansoor ...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.