Wastewater contaminants are not merely pollutants to contend with. These impurities can be harnessed to support hydrogen production while simultaneously eliminating pollutants from the liquid waste.
Researchers in Australia devised electrodes to capture platinum, chromium, nickel, and other metals in the water, which are then employed in the generation of green hydrogen production. The electrodes are composed of an absorbent carbon surface that attracts the metals from wastewater, forming catalysts that are stable and efficient at conducting electricity and help to accelerate the water splitting. Agricultural waste serves as the basis for the carbon surface.
>> In Other News: The Hydrogen Stream: EIA Sees Mostly Gray Hydrogen in U.S. by 2050
Tests described in ACS Electrochemistry exposed partially treated wastewater samples in a container to an anode and a cathode, and powered the water-splitting process with solar energy. At the cathode, water molecules gain electrons and form hydrogen gas. At the anode, water molecules lose electrons and form oxygen. The process efficiently separates water into hydrogen and oxygen, which could then both be collected and used.
The system supported continuous water splitting for 18 days during laboratory experiments, with minimal decline in performance. According to researchers from RMIT University, University of New South Wales, and the Australian Nuclear Science and Technology Organisation, this method offers scope to reduce the high cost of wastewater treatment while turning it into valuable green hydrogen.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 💧 Duke Energy Florida Unveils Nation's First System Capable Of Producing, Storing And Combusting 100% Green Hydrogen ✈️ Technip Energies’ Hummingbird Technology Powers LanzaJet’s...
Inside This Issue 💰 The $9B Deal That Almost Didn't Happen ⚖️ IMO Rules Understate Benefits of Utilising Captured Carbon, Says GCMD 🌾 Corteva and bp Launch Biofuel Feedstock Joint Venture Etlas 🔬 ...
Inside This Issue 🌽 Nebraska's 3-Plant Ethanol CCS Gamble Pays Off Big 🧊 New Evaporative Crystallizer Design Accelerates Direct-Air Carbon Capture ✈️ From SAF to Solar: DHL’s Bold Steps Toward Net...
Capstone Green Energy Holdings, Inc. (the "Company” or “Capstone”) (OTCQX: CGEH), together with its subsidiaries, a leading provider of clean technology solutions using ultra-low emission microturb...
Duke Energy Florida, a subsidiary of Duke Energy, unveiled its DeBary Hydrogen Production Storage System in Volusia County, marking the first demonstration project in the United States capable of u...
ESG Clean Energy, LLC ("ESG"), developers of Net Zero Carbon Footprints and clean energy solutions for distributed power generation, announced today it has signed a licensing deal with Viking Energ...
LanzaTech Achieves Guaranteed Performance At Japan MSW-To-Ethanol Plant
Collaborative pilot at Kuji facility showcases robust ethanol yields using LanzaTech’s fermentation technology Achieved ethanol yields exceeding guaranteed performance for over 14 consecutive d...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.