Current methods of capturing and releasing carbon are expensive and so energy-intensive they often require, counterproductively, the use of fossil fuels. Taking inspiration from plants, Cornell University researchers have assembled a chemical process that can power carbon capture with an energy source that's abundant, clean and free: sunlight.
The research could vastly improve current methods of carbon capture—an essential strategy in the fight against global warming—by lowering costs and net emissions.
In the study, researchers found that they can separate carbon dioxide from industrial sources by mimicking the mechanisms plants use to store carbon, using sunlight to make a stable enol molecule reactive enough to "grab" the carbon.
>> In Other News: US House Targets Big Climate, Clean Energy Rollbacks in Budget Proposal
They also used sunlight to drive an additional reaction that can then release the carbon dioxide for storage or reuse.
It's the first light-powered separation system for both carbon capture and release.
Graduate student Bayu Ahmad is first author.
Phillip Milner, associate professor of chemistry and chemical biology in the College of Arts and Sciences
From a chemistry standpoint, this is totally different than what anybody else is doing in carbon capture. The whole mechanism was Bayu's idea, and when he originally showed it to me, I thought it would never work. It totally works.
The researchers tested the system using flue samples from Cornell's Combined Heat and Power Building, an on-campus power plant that burns natural gas, and found it was successful in isolating carbon dioxide.
Milner said this step was significant, as many promising methods for carbon capture in the lab fail when up against real-world samples with trace contaminants.
We'd really like to get to the point where we can remove carbon dioxide from air, because I think that's the most practical. You can imagine going into the desert, you put up these panels that are sucking carbon dioxide out of the air and turning it into pure high-pressure carbon dioxide. We could then put it in a pipeline or convert it into something on-site.
Milner's lab is also exploring how the light-powered system could be applied to other gasses, as separation drives 15% of global energy use.
There's a lot of opportunity to reduce energy consumption by using light to drive these separations instead of electricity.
The study was supported by the National Science Foundation, the U.S. Department of Energy, the Carbontech Development Initiative and Cornell Atkinson.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🔍 QIMC Hits 5,558 ppm Hydrogen in Nova Scotia Discovery 🏗️ Haffner Energy Launches the C-iC Modular Units Line to Unlock Financing for Mid-Sized Biofuel Projects 🌱 CF Industries,...
Inside This Issue 💰 Congress Preserves Carbon Management Funding in FY26 Bill Heading to Trump's Desk 🧪 HYCO1 Announces Three U.S. Patents Powering the Most Advanced Syngas Production Platform Thr...
Inside This Issue 🛢️ This Saskatchewan Well Just Made Hydrogen History ⚡ Plug Power Completes Installation of 100 MW GenEco Electrolyzer Units at Galp’s Sines Refinery 🧪 SaltX Receives a $1.5 Mill...
Honeywell Collaborates With SAF One and Tata Projects to Enable Sustainable Aviation Fuel Production
Mumbai : Honeywell (NASDAQ: HON) announced that SAF One Energy Management Limited (SAF One) will use Honeywell UOP Ecofining™ process technology to produce sustainable aviation fuel (SAF). Tata Pr...
HNO International Secures Hydrogen Fueling MOU With US Based Drone Manufacturer
HOUSTON, TX / HNO International, Inc. (OTCQB:HNOI), a leader in decentralized hydrogen energy solutions, today announced the signing of an MOU pilot program for hydrogen tank delivery and return sy...
CF Industries Holdings, Inc. (NYSE: CF), a leading global manufacturer of hydrogen and nitrogen products, and POET, the world’s largest producer of biofuels, have launched a pilot project with majo...
Haffner Energy announced today the launch of its new C-iC modular industrial units line1, designed to address the financing and deployment challenges facing medium-scale, decentralized biofuel proj...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.